MicroRNA-144-3p protects against chemotherapy-induced apoptosis of ovarian granulosa cells and activation of primordial follicles by targeting MAP3K9

Author:

Liu Meng,Xiao Bang,Zhu Yiqing,Chen Meiting,Huang Jinfeng,Guo Haiyan,Wang Fang

Abstract

AbstractPremature ovarian failure (POF) is defined by amenorrhea, ovarian atrophy, hypoestrogenism, elevated gonadotropin level, and infertility under the age of 40. POF is frequently induced by chemotherapeutic agents. However, the underlying mechanisms regarding chemotherapy-mediated damage to ovarian function are unclear. In this study, enhanced apoptosis of granulosa cells (GCs) and aberrant activation of primordial follicles were observed in a POF mouse model induced by cisplatin. We subsequently observed significant downregulation of miR-144-3p and upregulation of mitogen-activated protein kinase kinase kinase 9 (MAP3K9) in primary ovarian GCs from POF mice, as revealed by microarrays. Furthermore, MAP3K9 expression was higher in human ovarian granulosa cells (COV434) treated with cisplatin and was identified as a novel target of miR-144-3p. Functional analysis revealed that miR-144-3p attenuated cisplatin induced apoptosis of GCs via silencing MAP3K9 expression, which suppressed the activity of the downstream p38 mitogen activated protein kinase (MAPK) pathway. Meanwhile, miR-144-3p prevented premature primordial follicle depletion in cisplatin-induced POF mice through targeting Map3k9, which led to a decline in the phosphorylation and activation of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase b (AKT) pathway. Taken together, this study revealed the protective effects of miR-144-3p on ovarian function and shed light on the epigenetic regulatory mechanism in the development of POF, which might provide new biomarkers for the ovarian reserve.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Journey to Reach the Ovary Using Next-Generation Technologies;International Journal of Molecular Sciences;2023-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3