Author:
Yan Jianwen,Liao Zhong,Yu Yafang
Abstract
Abstract
Aim
This study aims to explore the effects of finite element biomechanical properties of different methods in the treatment of osteoporotic thoracolumbar fractures.
Methods
Based on the ultra-thin computed tomography scan data of a volunteer’s thoracolumbar spine, the finite element method was used to simulate the treatment of osteoporotic thoracolumbar fracture. Spiral computed tomography scanning was used to obtain images of the thoracolumbar region, which was then imported into Mimics software to obtain the three-dimensional geometric model. The finite element model of normal T11 – L2 segment was established by finite element software Abaqus and the validity of the model loading was verified. The finite element model of T11 vertebral compression fracture was established based on normal raw data. The clinical overextension reduction manipulation was simulated by different treatment methods and the changes in stress and displacement in different parts of injured vertebrae were analyzed.
Results
An effective finite element model of T11–L2 segment was established. The maximum stress, axial compression strength, axial compression stiffness, and transverse shear stiffness were significantly better in the percutaneous kyphoplasty and percutaneous vertebroplasty treatment group than in the conservative treatment group and open treatment group (P < 0.05). Additionally, there was no significant difference between the open treatment group and conservative treatment group, or between the PKP and PVP treatment group.
Conclusion
Percutaneous vertebroplasty and percutaneous kyphoplasty not only met the requirements of normal functional kinematics of thoracolumbar spine, but also restored the stability of thoracolumbar spine. They had good biomechanical properties and remarkable application effects. The application of finite element analysis can help select a scientific, reasonable, and effective treatment scheme for the clinical diagnosis and treatment of osteoporotic thoracolumbar fractures.
Funder
Fuzhou Health Science and technology plan project
Fujian Provincial Clinical medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma
Publisher
Springer Science and Business Media LLC