The predictive value of deep learning-based cardiac ultrasound flow imaging for hypertrophic cardiomyopathy complicating arrhythmias

Author:

Wu Haotang,Huang Zhiyong,Liu Juanjuan,Dai Jiancheng,Zhao Yong,Luo Weiquan

Abstract

Abstract Objective To investigate the predictive value of deep learning-based cardiac ultrasound flow imaging for hypertrophic cardiomyopathy (HCM) complicated by arrhythmias. Methods The clinical data of 158 patients with hypertrophic cardiomyopathy were retrospectively collected from July 2019 to December 2021, and additionally divided into training group 106 cases, validation group 26 cases and test group 26 cases according to the ratio of 4:1:1, and divided into concurrent and non-concurrent groups according to whether they were complicated by arrhythmia or not, respectively. General data of patients (age, gender, BMI, systolic blood pressure, diastolic blood pressure, HR) were collected, a deep learning model for cardiac ultrasound flow imaging was established, and image data, LVEF, LAVI, E/e', vortex area change rate, circulation intensity change rate, mean blood flow velocity, and mean EL value were extracted. Results The differences in general data (age, gender, BMI, systolic blood pressure, diastolic blood pressure, HR) between the three groups were not statistically significant, P > 0.05. The differences in age, gender, BMI, systolic blood pressure, diastolic blood pressure, HR between the patients in the concurrent and non-concurrent groups in the training group were not statistically significant, P > 0.05. Conclusions Deep learning-based cardiac ultrasound flow imaging can identify cardiac ultrasound images more accurately and has a high predictive value for arrhythmias complicating hypertrophic cardiomyopathy, and vortex area change rate, circulation intensity change rate, mean flow velocity, mean EL, LAVI, and E/e' are all risk factors for arrhythmias complicating hypertrophic cardiomyopathy.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning Model for Video-Classification of Echocardiography Images;2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE);2023-10-25

2. Machine Learning Approaches for Segmentation of Cardiovascular Neurocristopathy Related Images;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3