Abstract
Abstract
Introduction
Resuscitative endovascular balloon occlusion of the aorta (REBOA) may be used in severely injured patients with uncontrollable bleeding. However, zone-dependent effects of REBOA are rarely described. We compared the short-term zone- and organ-specific microcirculatory changes in abdominal organs and the extremity during occlusion of the aorta in a standardized porcine model.
Methods
Male pigs were placed under general anesthesia, for median laparotomy to expose intra-abdominal organs. REBOA placement occurred in Zone 1 (from origin left subclavian artery to celiac trunk), Zone 2 (between the coeliac trunk and most caudal renal artery) and Zone 3 (distal most caudal renal artery to aortic bifurcation). Local microcirculation of the intra-abdominal organs were measured at the stomach, colon, small intestine, liver, and kidneys. Furthermore, the right medial vastus muscle was included for assessment. Microcirculation was measured using oxygen-to-see device (arbitrary units, A.U). Invasive blood pressure measurements were recorded in the carotid and femoral artery (ipsilateral). Ischemia/Reperfusion (I/R)-time was 10 min with complete occlusion.
Results
At baseline, microcirculation of intra-abdominal organs differed significantly (p < 0.001), the highest flow was in the kidneys (208.3 ± 32.9 A.U), followed by the colon (205.7 ± 36.2 A.U.). At occlusion in Zone 1, all truncal organs showed significant decreases (p < 0.001) in microcirculation, by 75% at the colon, and 44% at the stomach. Flow-rate changes at the extremities were non-significant (n.s). During occlusion in Zone 2, a significant decrease (p < 0.001) in microcirculation was observed at the colon (− 78%), small intestine (− 53%) and kidney (− 65%). The microcirculatory changes at the extremity were n.s. During occlusion in Zone 3, truncal and extremity microcirculatory changes were n.s.
Conclusion
All abdominal organs showed significant changes in microcirculation during REBOA. The intra-abdominal organs react differently to the same occlusion, whereas local microcirculation in extremities appeared to be unaffected by short-time REBOA, regardless of the zone of occlusion.
Funder
UniversitätsSpital Zürich
Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. Pfeifer R, Tarkin IS, Rocos B, Pape HC. Patterns of mortality and causes of death in polytrauma patients–has anything changed? Injury. 2009;40(9):907–11. https://doi.org/10.1016/j.injury.2009.05.006 (Epub 2009/06/21).
2. Bennett BL, Littlejohn LF, Kheirabadi BS, Butler FK, Kotwal RS, Dubick MA, et al. Management of external hemorrhage in tactical combat casualty care: chitosan-based hemostatic gauze dressings–TCCC Guidelines-Change 13–05. J Special Oper Med. 2014;14(3):40–57.
3. Aaran LHC, Him CK, Bong LK, Wilson L. Outcome of haemodynamically unstable open pelvic fracture patients managed with “3-in-1” pelvic damage control protocol in a major trauma centre. J Orthop Trauma Rehabil. 2018;25:62–8. https://doi.org/10.1016/j.jotr.2017.10.002.PubMedPMID:WOS:000448855000014.
4. Forrester JD, Weiser TG, Maggio P, Browder T, Tennakoon L, Spain D, et al. Trends in open vascular surgery for trauma: implications for the future of acute care surgery. J Surg Res. 2016;205(1):208–12.
5. Scalea TM, Feliciano DV, DuBose JJ, Ottochian M, O’Connor JV, Morrison JJ. Blunt thoracic aortic injury: endovascular repair is now the standard. J Am Coll Surg. 2019;228(4):605–10. https://doi.org/10.1016/j.jamcollsurg.2018.12.022.PubMedPMID:WOS:000461357100050.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献