Abstract
Abstract
Background
Long noncoding RNA (lncRNA)-regulated mechanism in acute lung injury (ALI) has attracted special interests in study researches. We planned to disclose whether KCNQ1 overlapping transcript 1 (Kcnq1ot1) is involved in ALI and its mechanism.
Methods
The lipopolysaccharide (LPS)-induced ALI model was established in mice. Kcnq1ot1, microRNA (miR)-7a-5p and Reticulon 3 (Rtn3) levels were measured in lung tissues of mice. The vector that changed Kcnq1ot1, miR-7a-5p and Rtn3 expression was injected into LPS-treated mice, and pathological damage, fibrosis, apoptosis and inflammatory response were subsequently examined in lung tissues. The relation between Kcnq1ot1 and miR-7a-5p, and that between miR-7a-5p and Rtn3 were identified.
Results
Kcnq1ot1 and Rtn3 expression increased while miR-7a-5p expression decreased in LPS-treated mice. Reduced Kcnq1ot1 or elevated miR-7a-5p alleviated pathological damage, fibrosis, apoptosis and inflammatory response in ALI mice, while overexpressed Rtn3 worsened ALI in mice. Downregulation of Rtn3 reversed the exacerbation of miR-7a-5p downregulation in ALI mice. Kcnq1ot1 competitively bound to miR-7a-5p and miR-7a-5p negatively mediated Rtn3 expression.
Conclusion
Our experiments evidence that silencing Kcnq1ot1 upregulates miR-7a-5p to suppress Rtn3 expression, thereby diminishing LPS-induced ALI.
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献