Mass spectrometry and two-dimensional electrophoresis in prenatal diagnosis of mucopolysaccharidosis type VI

Author:

Aboulnasr Aly A.ORCID,Gaber Khaled R.,Abdel Sameea Gamal,Gouda Amr S.,Ibrahim Mona M.,Shalabi Taghreed A.,Elnouri Amr

Abstract

Abstract Background Mucopolysaccharidosis VI (MPS VI) or Maroteaux–Lamy syndrome is an autosomal recessive lysosomal storage disorder. Clinical manifestations are related to progressive accumulation of dermatan sulfate (DS). Two-dimensional electrophoresis has traditionally been used for the diagnosis of MPS disorders. The method is only qualitative and is time consuming. For prenatal diagnosis of MPS, 6–8 ml of amniotic fluid is required and 5 working days to complete. It needs personal experience to do the test and to interpret the results. Mass spectrometry (MS) is now available as a quantitative method and for prenatal diagnosis of MPS it needs less amniotic fluid and takes only 2 working days. It is more accurate, less person dependent, but it costs more. Our aim was to introduce quantitative determination of dermatan sulfate using mass spectrometry in the prenatal diagnosis of MPS VI in Egypt and to compare this technique to the classical qualitative diagnosis using two-dimensional electrophoresis (2-DEP) of the glycosaminoglycans (GAGs) in amniotic fluid. Thirty pregnant females each with single fetus were subjected to amniocentesis at 16 weeks gestation. Ten with a previously affected MPS VI infant and twenty served as controls. Prenatal diagnosis (PD) was done by both MS and 2-DEP. Results MS verified 2-DEP results which showed 5 affected and 5 non-affected fetuses with MPS VI. Conclusion Two-dimensional electrophoresis of the GAGs in amniotic fluid is a good qualitative method and MS was an accurate quantitative method for prenatal diagnosis of MPS type VI. Quantitative determination of GAGs in AF by mass spectrometry is quicker. Where prenatal diagnosis is recommended for at risk pregnancies, mass spectrometry could be used more in the future as it gives rapid and accurate results.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3