In silico profiling of non-synonymous SNPs in IDS gene for early diagnosis of Hunter syndrome

Author:

Sivakumar Adarshan,Dinakarkumar Yuvaraj,Al-Qahtani Wahidah H.,Karnan Muthusamy,Rajabathar Jothiramalingam,Charumathi Arokiyaraj,Sadhaasivam Elakiya,Venugopal Aparna Preetha,Singh Baljeet Mukhtiar,Qutub Maqbool,Anjaneyulu Sai RameshORCID

Abstract

Abstract Background Single amino acid substitutions in the Iduronate-2-sulfatase enzyme result in destabilization of the protein and cause a genetic disorder called Hunter syndrome. To gain functional insight into the mutations causing Hunter syndrome, various bioinformatics tools were employed, and special significance is given to molecular docking. Results In-silico tools available online for preliminary analysis including SIFT, PolyPhen 2.0, etc., were primarily employed and have identified 51 Non-synonymous Single Nucleotide Polymorphisms (ns-SNPs) as possibly deleterious. Further, modelling and energy minimization followed by Root Mean Square Deviation (RMSD) calculation has labelled 42 mutations as probably deleterious ns-SNPs. Later, trajectory analysis was performed using online tools like PSIPRED, SRide, etc., and has predicted six ns-SNPs as potentially deleterious. Additionally, docking was performed, and three candidate ns-SNPs were identified. Finally, these three ns-SNPs were confirmed to play a significant role in causing syndrome through root mean square fluctuation (RMSF) calculations. Conclusion From the observed results, G134E, V503D, and E521D were predicted to be candidate ns-SNPs in comparison with other in-silico tools and confirmed by RMSF calculations. Thus, the identified candidate ns-SNPs can be employed as a potential genetic marker in the early diagnosis of Hunter syndrome after clinical validation.

Funder

King Saud University

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3