Identification of novel likely pathogenic variant in CDH23 causing non-syndromic hearing loss, and a novel variant in OTOGL in an extended Iranian family

Author:

Mohammadi Aliasgar,Hoseinzadeh Marziyeh,Narrei Sina,Pourreza Mohammad Reza,Mohammadi Yousof,Norouzi Mahnaz,Sadeghian Ladan,Tabatabaiefar Mohammad Amin

Abstract

Abstract Background Sensorineural hearing loss (SNHL) is a clinically and genetically heterogeneous group of disorders of the auditory system. SNHL can occur as a symptom in more than 400 syndromes, and mutations in more than 150 genes can lead to SNHL. Mutations in the GJB2 and GJB6 genes are among the most common causes of SNHL worldwide. Mutations in Cadherin 23 (CDH23) can cause Usher syndrome and/or non-syndromic hearing loss (NSHL). Material and methods In this study, the Whole Exome Sequencing (WES) was used to detect the cause of hearing loss in a large consanguineous Iranian family with two patients. All family members underwent a thorough Genotype–phenotype correlation assessment and co-segregation analysis to understand the inheritance pattern within the family. The candidate variants were further confirmed by Sanger sequencing. In addition, in silico analysis was performed to predict the functional impact of the variants; the interpretation of the variants was performed in accordance with the American College of Medical Genetics (ACMG) guidelines. Results WES results identified two novel variants, a homozygous missense variant in CDH23 (c.2961T > G) and a heterozygous splice site variant in OTOGL that was compatible with the autosomal recessive pattern of inheritance. Bioinformatics studies confirmed the pathogenic effects of novel variants. The c.2961T > G variant was classified as likely pathogenic. Conclusions The novel identified variant in the CDH23 was the cause of congenital profound progressive form of HL. Samples were not available from the second family to distinguish which variant is responsible for the molecular pathology of the disease. Further studies and functional examinations are suggested for investigating the role of OTOGL: c. 1863-1G > T in deafness.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3