Abstract
Abstract
Background
Autism is characterized by high heritability and a complex genetic mutational landscape with restricted social behavior and impaired social communication. Whole-exome sequencing is a reliable tool to pinpoint variants for unraveling the disease pathophysiology. The present meta-analysis was performed using 222 whole-exome sequences deposited by Simons Simplex Collection (SSC) at the European Nucleotide Archive. This sample cohort was used to identify causal mutations in autism-specific genes to create a mutational landscape focusing on the CNTNAP2 gene.
Results
The authors account for the identification of 15 high confidence genes with 24 variants for autism with Simons Foundation Autism Research Initiative (SFARI) gene scoring. These genes encompass critical autism pathways such as neuron development, synapse complexity, cytoskeleton, and microtubule activation. Among these 15 genes, overlapping variants were present across multiple samples: KMT2C in 167 cases, CNTNAP2 in 192 samples, CACNA1C in 152 cases, and SHANK3 in 124 cases. Pathway analysis identifies clustering and interplay of autism genes—WDFY3, SHANK2, CNTNAP2, HOMER1, SYNGAP1, and ANK2 with CNTNAP2. These genes coincide across autism-relevant pathways, namely abnormal social behavior and intellectual and cognitive impairment. Based on multiple layers of selection criteria, CNTNAP2 was chosen as the master gene for the study. It is an essential gene for autism with speech-language delays, a typical phenotype in most cases under study. It showcases nine variants across multiple samples with one damaging variant, T589P, with a GERP rank score range of 0.065–0.95. This unique variant was present across 86.5% of the samples impairing the epithelial growth factor (EGF) domain. Established microRNA (miRNA) genes hsa-mir-548aq and hsa-mir-548f were mutated within the CNTNAP2 region, adding to the severity. The mutated protein showed reduced stability by 0.25, increased solvent accessibility by 9%, and reduced depth by 0.2, which rendered the protein non-functional. Secondary physical interactors of CNTNAP2 through CNTN2 proteins were mutated in the samples, further intensifying the severity.
Conclusion
CNTNAP2 has been identified as a master gene in autism manifestation responsible for speech-language delay by impairing the EGF protein domain and downstream cascade. The decrease in EGF is correlated with vital autism symptoms, especially language disabilities.
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献