Potential treatment for chronic myeloid leukemia using microRNA: in silico comparison between plants and human microRNAs in targeting BCR-ABL1 gene

Author:

Mohamad Syarifah Faezah Syed,Elias Marjanu Hikmah

Abstract

Abstract Background Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by the expression of the BCR-ABL1 fusion gene. Tyrosine kinase inhibitors (TKI) are used to treat CML, but mutations in the tyrosine kinase domain contribute to CML chemo-resistance. Therefore, finding alternative molecular-targeted therapy is important for the comprehensive treatment of CML. MicroRNAs (miRNA) are small non-coding regulatory RNAs which suppress the expression of their target genes by binding to the 3′ untranslated region (3′UTR) of the target mRNA. Hypothetically, the miRNA-mRNA interaction would suppress BCR-ABL1 expression and consequently reduce and inhibit CML cell proliferation. Thus, our objective was to determine the target interaction of human and plant miRNAs targeting the 3′UTR region of BCR-ABL1 in terms of miRNA binding conformity, protein interaction network, and pathways using in silico analysis. The 3′UTR sequence of BCR-ABL1 is obtained from Ensembl Genome Browser while the binding conformity was determined using the PsRNATarget Analysis Server, RNA22, Target Rank Server, and DIANA TOOLS. Protein-protein interaction network and pathway analysis are determined using STRING, Cytoscape, and KEGG pathway analysis. Results Five plants and five human miRNAs show strong binding conformity with 3′UTR of BCR-ABL1. The strongest binding conformity was shown by Oryza sativa’s Osa-miR1858a and osa-miR1858b with −24.4 kcal/mol folding energy and a p value of 0.0077. Meanwhile, in human miRNA, the hsa-miR-891a-3p shows the highest miTG score of 0.99 with −12 kcal/mol folding energy and a p value of 0.037. Apart from ABL1, osa-miR1858a/osa-miR1858b and hsa-miR891a-3p also target other 720 and 645 genes, respectively. The interaction network of Osa-miR1858a/osa-miR1858b and hsa-miR891a-3p identifies nineteen and twelve ABL1’s immediate neighboring proteins, respectively. The pathways analysis focuses on the RAS, MAPK, CML, and hematopoietic cell lineage pathway. Conclusion Both plant and human miRNAs tested in this study could be a potential therapeutic prospect in CML treatment, but thermodynamically, osa-miR1858a/osa-miR1858b binding to ABL1 is more favorable. However, it is important to carry out more research in vitro and in vivo and clinical studies to assess its efficacy as a targeted therapy for CML. Graphical abstract

Funder

Ministry of Higher Education, Malaysia

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3