A computational analysis reveals eight novel high-risk single nucleotide variants of human tumor suppressor LHPP gene

Author:

Feroz Tasmiah,Islam Md. KobirulORCID

Abstract

Abstract Background LHPP is a tumor suppressor protein associated with various malignancies like liver, oral, pharyngeal, bladder, cervical, and gastric cancers through controlling various pathways. Several single nucleotide variants have been reported to cause cancers. The main objectives of our study were to investigate the impact of the deleterious non-synonymous single nucleotide variants on structure and functions of the LHPP protein. Results We used nine computational tools (SNAP2, PROVEAN, POLYPHEN 2, PREDICT SNP, MAPP, PhD-SNP, SIFT, PANTHER, and PMUT) to find out the deleterious SNPs. These nine computational algorithms predicted 34 nsSNPs to be deleterious as a result of their computational analysis. Using ConSurf, I-Mutant, SDM, MUpro, and Mutpred, we emphasized more how those harmful nsSNPs negatively affect the structure and function of the LHPP protein. Furthermore, we predicted the mutant protein structures and assessed the total energy value deviation in comparison with LHPP original structure and also calculated RMSD values and TM scores. By comparing the result from all these computational approaches, we shortlisted a total eight novel nsSNPs (D214G, D219N, Q224P, L231P, G236W, R234C, R234P, and V233G) that impose high risks to the structure and functions of LHPP protein. To analyze the mutant protein’s behavior in physiological condition, we performed 50 ns molecular dynamic simulation using WebGro online tool and found that the mutants values vary from the wild type in terms of RMSD, RMSF, Rg, SASA, and H-bond numbers. Prognostic significance analysis by Kaplan–Meier plotter showed that abnormal regulation of LHPP can also serve as a prognostic marker for the patient with breast, ovarian, and gastric cancers. Additionally, ligand binding sites analysis revealed the presence of D214G and D219N mutants in the binding site one which means these two nsSNPs can disturb the binding capacity of the LHPP protein. Protein–protein interaction analysis revealed LHPP proteins’ interactions with PPA1, ATP12A, ATP4A, ATP4B, ATP5F1, ATP5J, PPA2, ATP6V0A4, ATP6V0A2, and MT-ATP8 with different degree of connectivity. Conclusion These results demonstrate a computational understanding of the harmful effect of nsSNPs in LHPP, which may be useful for molecular approaches.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3