System biology approach to delineate expressional difference in the blood mononuclear cells between healthy and Turner syndrome individuals

Author:

Farooqui Anam,Tamkeen Naaila,Tazyeen Safia,Ali Sher,Ishrat Romana

Abstract

Abstract Background Turner syndrome (TS) is a rare disorder associated either with complete or partial loss of one X chromosome in women. The information on the genotype–phenotype relationship in TS is inadequate. Comparing the healthy and Turner syndrome patients may help elucidate the mechanisms involved in TS pathophysiology. Gene expression differences between healthy and individuals with Turner syndrome were characterized using the systems-biology approach of weighted gene coexpression network analysis (WGCNA) on 182 microarray peripheral mononuclear blood samples (PBMC). Results The coexpression networks of healthy and TS had scale-free topology that ensures network robustness. In the process, five modules were preserved between healthy and TS, which carry several genes common in each module. Two of them, SMCHD1 and PGK1, have already been reported to be involved in TS. Previously reported genes of TS, specifically, PTPN22, RPS4X, CSF2RA, and TIMP1, were missing in their respective modules. Dysfunction, differential expression, or absence of these genes could lead to a progressive disruption of molecular pathways leading to the pathophysiology of TS. Indeed, we observed a significant difference in the functions of these modules when compared within and across the healthy and TS samples. We identified four clusters in the PPI network constructed from the top 15 KME enriched in significant functions. Conclusion Overall, our work highlights the potential molecular functions, pathways, and molecular targets of TS that can be exploited therapeutically in the human healthcare system.

Funder

Indian Council of Medical Research

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3