NKX2.5 coding exons sequencing reveals novel non-synonymous mutations in patients with sporadic congenital heart diseases among the Tanzanian population

Author:

Suluba EmmanuelORCID,Masaganya James,Mbugi Erasto,Masala Mwinyi,Mathew Jackline,Mruma Henry,Shuwei Liu

Abstract

Abstract Background The evolutionally conserved homeobox transcription factor NKX2-5 has been at the forefront in the field of cardiac biology, providing molecular insights into the mechanisms of cardiac development and disease. This homodomain transcription factor is a central regulator of cardiac development and is expressed in both the first and second heart fields (FHF and SHF). Mutations in the NKX2-5 gene have been linked to sporadic cases of congenital heart disease (CHD), making it a significant target for research and study. While several studies have been conducted on Caucasian populations, there is a dearth of knowledge on the effects of NKX2-5 gene mutations in other settings, underscoring the need for further investigation. Due to differences in geographical and ancestral origin, we hypothesize that mutations may vary across different populations. Understanding the genetic factors that cause CHD is essential for providing effective genetic counseling and developing strategies for risk reduction. Additionally, identification of NKX2-5 mutations in individuals with CHDs is crucial because patients with CHDs are at a higher risk of progressive conduction disease and sudden cardiac death, and genetic information is taken into consideration while making decisions regarding pacemakers and implantable cardiac defibrillators. To determine the risk of congenital heart disease among infants, we conducted a study where we sequenced the exon 1 and exon 2 of NKX 2.5 in patients with sporadic CHDs, with the aim of identifying mutations in the NKX2.5 gene. Results In this study, a novel frame-shift disease-causing mutation was discovered in patients with atrial-ventricular septal defect. The mutation, identified as c95_95 del A; cDNA.369–369 delA; g 369–369 delA, resulted in the substitution of phenylalanine to leucine (F295L), which in turn caused a truncated NKX2.5 protein. In addition, a non-synonymous mutation, g 316C > T; cDNA 316C > T leucine to arginine (L37R) substitution, was found in a patient with the tetralogy of Fallot, affecting protein function. Furthermore, a novel non-synonymous mutation identified as g 2295–2298; cDNA 755–758 delins AGGG, was predicted by mutation taster to be disease-causing in a ventricular septal defect. It is worth noting that none of these mutations were found among the control subjects, highlighting their potential significance in the pathogenesis of these cardiac defects. Conclusion Mutations in the NKX2.5 gene are associated with congenital heart diseases and provide molecular insight into the pathogenesis of congenital heart diseases. We recommend that patients with NKX2.5 mutations have periodic screening for cardiac conduction abnormalities and be evaluated for potential implanted cardiac defibrillators and pacemakers.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3