Abstract
Abstract
Background
Upon re-examination of our human history, evolutionary perspectives, and genetics, a prevailing iron deficiency phenotype appears to have evolved to protect the human race from extinction.
Body
In this review, we summarize the evolutionary and genetic perspectives pointing towards the hypothesis that low iron mitigates infection. The presence of infection promotes the generation of resistance alleles, and there are some evolutionary and genetic clues that suggest the presence of an iron deficiency phenotype that may have developed to protect against infection. Examples include the relative paucity of iron overload genes given the essential role of iron, as well as the persistence of iron deficiency among populations in spite of public health efforts to treat it. Additional examination of geographic areas with severe iron deficiency in the setting of pandemics including H1N1, SARS, and COVID-19 reveals that areas with higher prevalence of iron deficiency are less affected. RNA viruses have several evolutionary adaptations which suggest their absolute need for iron, and this dependency may be exploited during treatment.
Conclusion
RNA viruses pose a unique challenge to modern healthcare, with an average of 2–3 new pathogens being discovered yearly. Their overarching requirements for iron, along with human evolutionary and genetic adaptations which favored an iron deficiency phenotype, ultimately suggest the potential need for iron control in these infections.
Publisher
Springer Science and Business Media LLC
Reference116 articles.
1. Kannan S, Shaik Syed Ali P, A S, K H. COVID-19 (Novel Coronavirus 2019). Eur Rev Med Pharmacol Sci 2020;24:2006–2001. https://doi.org/10.26355/eurrev.
2. Ruscitti P, Berardicurti O, Benedetto P Di, Cipriani P, Iagnocco A, Shoenfeld Y, et al. Severe COVID-19 , Another piece in the puzzle of the hyperferritinemic syndrome . an immunomodulatory perspective to alleviate the storm. Front Immunol 2020;11. https://doi.org/10.3389/fimmu.2020.01130.
3. Ehsani S. Distant sequence similarity between hepcidin and the novel coronavirus spike glycoprotein : a potential hint at the possibility of local iron dysregulation in n.d.;arXiv: 200. https://doi.org/https://arxiv.org/ftp/arxiv/papers/2003/2003.12191.pdf.
4. Denic S, Agarwal MM (2007) Nutritional iron deficiency: an evolutionary perspective. Nutrition 23:603–614. https://doi.org/10.1016/j.nut.2007.05.002
5. Cassat JE, Skaar EP (2013) Iron in infection and immunity. Cell Host µbe 13:509–519. https://doi.org/10.1016/j.chom.2013.04.010.Iron
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献