In silico analysis of non-synonymous single nucleotide polymorphisms of human DEFB1 gene

Author:

Venkata Subbiah Harini,Ramesh Babu Polani,Subbiah UshaORCID

Abstract

Abstract Background Single nucleotide polymorphisms (SNPs) play a significant role in differences in individual’s susceptibility to diseases, and it is imperative to differentiate potentially harmful SNPs from neutral ones. Defensins are small cationic antimicrobial peptides that serve as antimicrobial and immunomodulatory molecules, and SNPs in β-defensin 1 (DEFB1 gene) have been associated with several diseases. In this study, we have determined deleterious SNPs of the DEFB1 gene that can affect the susceptibility to diseases by using different computational methods. Non-synonymous SNPs (nsSNPs) of the DEFB1 gene that have the ability to affect protein structure and functions were determined by several in silico tools—SIFT, PolyPhen v2, PROVEAN, SNAP, PhD-SNP, and SNPs&GO. Then, nsSNPs identified to be potentially deleterious were further analyzed by I-Mutant and ConSurf. Post-translational modifications mediated by nsSNPs were predicted by ModPred, and gene-gene interaction was studied by GeneMANIA. Finally, nsSNPs were submitted to Project HOPE analysis. Results Ten nsSNPs of the DEFB1 gene were found to be potentially deleterious: rs1800968, rs55874920, rs56270143, rs140503947, rs145468425, rs146603349, rs199581284, rs201260899, rs371897938, rs376876621. I-Mutant server showed that nsSNPs rs140503947 and rs146603349 decreased stability of the protein, and ConSurf analysis revealed that SNPs were located in conserved regions. The physiochemical properties of the polymorphic amino acid residues and their effect on structure were determined by Project HOPE. Conclusion This study has determined high-risk deleterious nsSNPs of β-defensin 1 and could increase the knowledge of nsSNPs towards the impact of mutations on structure and functions mediated by β-defensin 1 protein.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3