MicroRNA related prognosis biomarkers from high throughput sequencing data of kidney renal clear cell carcinoma

Author:

Huang Minjiang,Zhang Ti,Yao Zhi-Yong,Xing Chaoqung,Wu Qingyi,Liu Yuan-Wu,Xing Xiao-LiangORCID

Abstract

Abstract Background Kidney renal clear cell carcinoma (KIRC) is the most common type of kidney cell carcinoma which has the worst overall survival rate. Almost 30% of patients with localized cancers eventually develop to metastases despite of early surgical treatment carried out. MicroRNAs (miRNAs) play a critical role in human cancer initiation, progression, and prognosis. The aim of our study was to identify potential prognosis biomarkers to predict overall survival of KIRC. Methods All data were downloaded from an open access database The Cancer Genome Atlas. DESeq2 package in R was used to screening the differential expression miRNAs (DEMs) and genes (DEGs). RegParallel and Survival packages in R was used to analysis their relationships with the KIRC patients. David version 6.8 and STRING version 11 were used to take the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Results We found 2 DEGs (TIMP3 and HMGCS1) and 3 DEMs (hsa-miR-21-5p, hsa-miR-223-3p, and hsa-miR-365a-3p) could be prognosis biomarkers for the prediction of KIRC patients. The constructed prognostic model based on those 2 DEGs could effectively predict the survival status of KIRC. And the constructed prognostic model based on those 3 DEMs could effectively predict the survival status of KIRC in 3-year and 5-year. Conclusion The current study provided novel insights into the miRNA related mRNA network in KIRC and those 2 DEGs biomarkers and 3 DEMs biomarkers may be independent prognostic signatures in predicting the survival of KIRC patients.

Funder

Hunan University of Medicine Foundation

Hunan Provincial Science & Technology Department

Hunan Provincial Education Department

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3