LncRNA and transcriptomic analysis of fetal membrane reveal potential targets involved in oligohydramnios

Author:

Ou Yu-hua,Liu Yu-kun,Zhu Li-qiong,Chen Man-qi,Yi Xiao-chun,Chen Hui,Zhang Jian-ping

Abstract

Abstract Background The multiple causes of oligohydramnios make it challenging to study. Long noncoding RNAs (lncRNAs) are sets of RNAs that have been proven to function in multiple biological processes. The purpose of this study is to study expression level and possible role of lncRNAs in oligohydramnios. Methods In this study, total RNA was isolated from fetal membranes resected from oligohydramnios pregnant women (OP) and normal amount of amniotic fluid pregnant women (Normal). LncRNA microarray was used to analyze the differentially expressed lncRNAs and mRNAs. Kyoto Encyclopedia of Genes and Genomes (KEGG) was used to analyze the main enrichment pathways of differentially expressed mRNAs. Real-time quantitative PCR (qPCR) was used to validate the lncRNA expression level. Results LncRNA microarray analysis revealed that a total of 801 lncRNAs and 367 mRNAs were differentially expressed in OP; in these results, 638 lncRNAs and 189 mRNAs were upregulated, and 163 lncRNAs and 178 mRNAs were downregulated. Of the lncRNAs, 566 were intergenic lncRNAs, 351 were intronic antisense lncRNAs, and 300 were natural antisense lncRNAs. The differentially expressed lncRNAs were primarily located in chromosomes 2, 1, and 11. KEGG enrichment pathways revealed that the differentially expressed mRNAs were enriched in focal adhesion as well as in the signaling pathways of Ras, tumor necrosis factor (TNF), estrogen, and chemokine. The qPCR results confirmed that LINC00515 and RP11-388P9.2 were upregulated in OP. Furthermore, the constructed lncRNA–miRNA–mRNA regulatory network revealed tenascin R (TNR), cystic fibrosis transmembrane conductance regulator (CFTR), ATP-binding cassette sub-family A member 12 (ABCA12), and collagen 9A2 (COL9A2) as the candidate targets of LINC00515 and RP11-388P9.2. Conclusions In summary, we revealed the profiles of lncRNA and mRNA in OP. These results might offer potential targets for biological prevention for pregnant women with oligohydramnios detected before delivery and provided a reliable basis for clinical biological treatment in OP.

Funder

National Nature Science Foundation of China

Guangdong Natural Science Foundation

Major Program of the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

Reference33 articles.

1. Beall MH, et al. Regulation of amniotic fluid volume. Placenta. 2007;28(8):824–32.

2. Ounpraseuth ST, et al. Normal amniotic fluid volume across gestation: comparison of statistical approaches in 1190 normal amniotic fluid volumes. J Obstet Gynaecol Res. 2017;56(4 Pt 1):11.

3. Lei H, Wen SW. Normal amniotic fluid index by gestational week in a Chinese population. Central-South China fetal growth study group. Obstet Gynecol. 1998;92(2):237–40.

4. Gadd RL. The volume of the liquor amnii in normal and abnormal pregnancies. J Obstet Gynaecol British Commonwealth. 2010;73(1):11–22.

5. Morris JM, et al. The usefulness of ultrasound assessment of amniotic fluid in predicting adverse outcome in prolonged pregnancy: a prospective blinded observational study. Bjog. 2003;110(11):989–94.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3