Correlating genomic copy number alterations with clinicopathologic findings in 75 cases of hepatocellular carcinoma

Author:

Peng Gang,Chai Hongyan,Ji Weizhen,Lu Yufei,Wu Shengming,Zhao Hongyu,Li PeiningORCID,Hu Qiping

Abstract

Abstract Background Oligonucleotide array comparative genomic hybridization (aCGH) analysis has been used for detecting somatic copy number alterations (CNAs) in various types of tumors. This study aimed to assess the clinical utility of aCGH for cases of hepatocellular carcinoma (HCC) and to evaluate the correlation between CNAs and clinicopathologic findings. Methods aCGH was performed on 75 HCC cases with paired DNA samples from tumor and adjacent nontumor tissues. Survival outcomes from these cases were analyzed based on Barcelona-Clinic Liver Cancer Stage (BCLC), Edmondson-Steiner grade (E-S), and recurrence status. Correlation of CNAs with clinicopathologic findings was analyzed by Wilcoxon rank test and clustering vs. K means. Results The survival outcomes indicated that BCLC stages and recurrence status could be predictors and E-S grades could be a modifier for HCC. The most common CNAs involved gains of 1q and 8q and a loss of 16q (50%), losses of 4q and 17p and a gain of 5p (40%), and losses of 8p and 13q (30%). Analyses of genomic profiles and clusters identified that losses of 4q13.2q35.2 and 10q22.3q26.13 seen in cases of stage A, grade III and nonrecurrence were likely correlated with good survival, while loss of 1p36.31p22.1 and gains of 2q11.2q21.2 and 20p13p11.1 seen in cases of stage C, grade III and recurrence were possibly correlated with worst prognosis. Conclusions These results indicated that aCGH analysis could be used to detect recurrent CNAs and involved key genes and pathways in patients with HCC. Further analysis on a large case series to validate the correlation of CNAs with clinicopathologic findings of HCC could provide information to interpret CNAs and predict prognosis.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3