Intrinsic and extrinsic epigenetic age acceleration are associated with hypertensive target organ damage in older African Americans

Author:

Smith Jennifer A.ORCID,Raisky Jeremy,Ratliff Scott M.,Liu Jiaxuan,Kardia Sharon L. R.,Turner Stephen T.,Mosley Thomas H.,Zhao Wei

Abstract

Abstract Background Epigenetic age acceleration, a measure of biological aging based on DNA methylation, is associated with cardiovascular mortality. However, little is known about its relationship with hypertensive target organ damage to the heart, kidneys, brain, and peripheral arteries. Methods We investigated associations between intrinsic (IEAA) or extrinsic (EEAA) epigenetic age acceleration, blood pressure, and six types of organ damage in a primarily hypertensive cohort of 1390 African Americans from the Genetic Epidemiology Network of Arteriopathy (GENOA) study. DNA methylation from peripheral blood leukocytes was collected at baseline (1996–2000), and measures of target organ damage were assessed in a follow-up visit (2000–2004). Linear regression with generalized estimating equations was used to test for associations between epigenetic age acceleration and target organ damage, as well as effect modification of epigenetic age by blood pressure or sex. Sequential Oligogenic Linkage Analysis Routines (SOLAR) was used to test for evidence of shared genetic and/or environmental effects between epigenetic age acceleration and organ damage pairs that were significantly associated. Results After adjustment for sex, chronological age, and time between methylation and organ damage measures, higher IEAA was associated with higher urine albumin to creatinine ratio (UACR, p = 0.004), relative wall thickness (RWT, p = 0.022), and left ventricular mass index (LVMI, p = 0.007), and with lower ankle-brachial index (ABI, p = 0.014). EEAA was associated with higher LVMI (p = 0.005). Target organ damage associations for all but IEAA with LVMI remained significant after further adjustment for blood pressure and antihypertensive use (p < 0.05). Further adjustment for diabetes attenuated the IEAA associations with UACR and RWT, and adjustment for smoking attenuated the IEAA association with ABI. No effect modification by age or sex was observed. Conclusions Measures of epigenetic age acceleration may help to better characterize the functional mechanisms underlying organ damage from cellular aging and/or hypertension. These measures may act as subclinical biomarkers for damage to the kidney, heart, and peripheral vasculature; however more research is needed to determine whether these relationships remain independent of lifestyle factors and comorbidities.

Funder

National Heart, Lung, and Blood Institute

National Institute of Neurological Disorders and Stroke

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3