Identification of differentially expressed genes associated with the pathogenesis of gastric cancer by bioinformatics analysis

Author:

Abdolahi Fatemeh,Shahraki Ali,Sheervalilou Roghayeh,Mortazavi Sedigheh Sadat

Abstract

Abstract Aim Gastric cancer (GC) is one of the most diagnosed cancers worldwide. GC is a heterogeneous disease whose pathogenesis has not been entirely understood. Besides, the GC prognosis for patients remains poor. Hence, finding reliable biomarkers and therapeutic targets for GC patients is urgently needed. Methods GSE54129 and GSE26942 datasets were downloaded from Gene Expression Omnibus (GEO) database to detect differentially expressed genes (DEGs). Then, gene set enrichment analyses and protein-protein interactions were investigated. Afterward, ten hub genes were identified from the constructed network of DEGs. Then, the expression of hub genes in GC was validated. Performing survival analysis, the prognostic value of each hub gene in GC samples was investigated. Finally, the databases were used to predict microRNAs that could regulate the hub genes. Eventually, top miRNAs with more interactions with the list of hub genes were introduced. Results In total, 203 overlapping DEGs were identified between both datasets. The main enriched KEGG pathway was “Protein digestion and absorption.” The most significant identified GO terms included “primary alcohol metabolic process,” “basal part of cell,” and “extracellular matrix structural constituent conferring tensile strength.” Identified hub modules were COL1A1, COL1A2, TIMP1, SPP1, COL5A2, THBS2, COL4A1, MUC6, CXCL8, and BGN. The overexpression of seven hub genes was associated with overall survival. Moreover, among the list of selected miRNAs, hsa-miR-27a-3, hsa-miR-941, hsa-miR-129-2-3p, and hsa-miR-1-3p, were introduced as top miRNAs targeting more than five hub genes. Conclusions The present study identified ten genes associated with GC, which may help discover novel prognostic and diagnostic biomarkers as well as therapeutic targets for GC. Our results may advance the understanding of GC occurrence and progression.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3