Uncovering essential anesthetics-induced exosomal miRNAs related to hepatocellular carcinoma progression: a bioinformatic investigation

Author:

Huang Ning,Fang Jie,Du Fang,Zhou Jichuan,Li Yuxin,Zhang Xiaoguang

Abstract

Abstract Background Anesthetic drugs may alter exosomal microRNA (miRNA) contents and mediate cancer progression and tumor microenvironment remodeling. Our study aims to explore how the anesthetics (sevoflurane and propofol) impact the miRNA makeup within exosomes in hepatocellular carcinoma (HCC), alongside the interconnected signaling pathways linked to the tumor immune microenvironment. Methods In this prospective study, we collected plasma exosomes from two groups of HCC patients (n = 5 each) treated with either propofol or sevoflurane, both before anesthesia and after hepatectomy. Exosomal miRNA profiles were assessed using next-generation sequencing (NGS). Furthermore, the expression data from The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) was used to pinpoint the differentially expressed exosomal miRNAs (DEmiRNAs) attributed to the influence of propofol or sevoflurane in the context of HCC. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were used to dissect the signaling pathways and biological activities associated with the identified DEmiRNAs and their corresponding target genes. Results A total of 35 distinct DEmiRNAs were exclusively regulated by either propofol (n = 9) or sevoflurane (n = 26). Through TCGA-LIHC database analysis, 8 DEmiRNAs were associated with HCC. These included propofol-triggered miR-452-5p and let-7c-5p, as well as sevoflurane-induced miR-24-1-5p, miR-122-5p, miR-200a-3p, miR-4686, miR-214-3p, and miR-511-5p. Analyses revealed that among these 8 DEmiRNAs, the upregulation of miR-24-1-5p consistently demonstrated a significant association with lower histological grades (p < 0.0001), early-stage tumors (p < 0.05) and higher survival (p = 0.029). Further analyses using GSEA and GSVA indicated that miR-24-1-5p, along with its target genes, were involved in governing the tumor immune microenvironment and potentially inhibiting tumor progression in HCC. Conclusions This study provided bioinformatics evidence suggesting that sevoflurane-induced plasma exosomal miRNAs may have a potential impact on the immune microenvironment of HCC. These findings established a foundation for future research into mechanistic outcomes in cancer patients.

Funder

Scientific Research and Development Fund of Zhongshan Hospital of Fudan University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3