Characterization of genome-wide association study data reveals spatiotemporal heterogeneity of mental disorders

Author:

Dai Yulin,O’Brien Timothy D.,Pei Guangsheng,Zhao Zhongming,Jia Peilin

Abstract

Abstract Background Psychiatric disorders such as schizophrenia (SCZ), bipolar disorder (BIP), major depressive disorder (MDD), attention deficit-hyperactivity disorder (ADHD), and autism spectrum disorder (ASD) are often related to brain development. Both shared and unique biological and neurodevelopmental processes have been reported to be involved in these disorders. Methods In this work, we developed an integrative analysis framework to seek for the sensitive spatiotemporal point during brain development underlying each disorder. Specifically, we first identified spatiotemporal gene co-expression modules for four brain regions three developmental stages (prenatal, birth to 11 years old, and older than 13 years), totaling 12 spatiotemporal sites. By integrating GWAS summary statistics and the spatiotemporal co-expression modules, we characterized the risk genes and their co-expression partners for five disorders. Results We found that SCZ and BIP, ASD and ADHD tend to cluster with each other and keep a distance from other psychiatric disorders. At the gene level, we identified several genes that were shared among the most significant modules, such as CTNNB1 and LNX1, and a hub gene, ATF2, in multiple modules. Moreover, we pinpointed two spatiotemporal points in the prenatal stage with active expression activities and highlighted one postnatal point for BIP. Further functional analysis of the disorder-related module highlighted the apoptotic signaling pathway for ASD and the immune-related and cell-cell adhesion function for SCZ, respectively. Conclusion Our study demonstrated the dynamic changes of disorder-related genes at the network level, shedding light on the spatiotemporal regulation during brain development.

Funder

U.S. National Library of Medicine

National Institute of Dental and Craniofacial Research

Cancer Prevention and Research Institute of Texas

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3