Author:
Li Menglu,Liu Mengya,Bin Yannan,Xia Junfeng
Abstract
Abstract
Background
Currently, numerous studies indicate that circular RNA (circRNA) is associated with various human complex diseases. While identifying disease-related circRNAs in vivo is time- and labor-consuming, a feasible and effective computational method to predict circRNA-disease associations is worthy of more studies.
Results
Here, we present a new method called SIMCCDA (Speedup Inductive Matrix Completion for CircRNA-Disease Associations prediction) to predict circRNA-disease associations. Based on known circRNA-disease associations, circRNA sequence similarity, disease semantic similarity, and the computed Gaussian interaction profile kernel similarity, we used speedup inductive matrix completion to construct the model. The proposed SIMCCDA method obtains an area under ROC curve (AUC) of 0.8465 with leave-one-out cross validation in the dataset, which is obtained by the combination of the three databases (circRNA disease, circ2Disease and circR2Disease). Our method surpasses other state-of-art models in predicting circRNA-disease associations. Furthermore, we conducted case studies in breast cancer, stomach cancer and colorectal cancer for further performance evaluation.
Conclusion
All the results show reliable prediction ability of SIMCCDA. We anticipate that SIMCCDA could be utilized to facilitate further developments in the field and follow-up investigations by biomedical researchers.
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献