Dense module searching for gene networks associated with multiple sclerosis

Author:

Manuel Astrid M.,Dai Yulin,Freeman Leorah A.,Jia Peilin,Zhao Zhongming

Abstract

Abstract Background Multiple sclerosis (MS) is a complex disease in which the immune system attacks the central nervous system. The molecular mechanisms contributing to the etiology of MS remain poorly understood. Genome-wide association studies (GWAS) of MS have identified a small number of genetic loci significant at the genome level, but they are mainly non-coding variants. Network-assisted analysis may help better interpret the functional roles of the variants with association signals and potential translational medicine application. The Dense Module Searching of GWAS tool (dmGWAS version 2.4) developed in our team is applied to 2 MS GWAS datasets (GeneMSA and IMSGC GWAS) using the human protein interactome as the reference network. A dual evaluation strategy is used to generate results with reproducibility. Results Approximately 7500 significant network modules were identified for each independent GWAS dataset, and 20 significant modules were identified from the dual evaluation. The top modules included GRB2, HDAC1, JAK2, MAPK1, and STAT3 as central genes. Top module genes were enriched with functional terms such as “regulation of glial cell differentiation” (adjusted p-value = 2.58 × 10− 3), “T-cell costimulation” (adjusted p-value = 2.11 × 10− 6) and “virus receptor activity” (adjusted p-value = 1.67 × 10− 3). Interestingly, top gene networks included several MS FDA approved drug target genes HDAC1, IL2RA, KEAP1, and RELA, Conclusions Our dmGWAS network analyses highlighted several genes (GRB2, HDAC1, IL2RA, JAK2, KEAP1, MAPK1, RELA and STAT3) in top modules that are promising to interpret GWAS signals and link to MS drug targets. The genes enriched with glial cell differentiation are important for understanding neurodegenerative processes in MS and for remyelination therapy investigation. Importantly, our identified genetic signals enriched in T cell costimulation and viral receptor activity supported the viral infection onset hypothesis for MS.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3