Author:
Chen Heng,Ye Runze,Guo Xiaogang
Abstract
Abstract
Objectives
Heart failure (HF) has been implicated in osteoporosis. However, causality remains unestablished. Here, we sought to assess causal associations of genetic liability to HF with osteoporosis using Mendelian randomization (MR) analyses.
Methods
Independent single nucleotide polymorphisms associated with HF at genome-wide significance were derived from a large genome-wide association study (GWAS) (including up to 977,323 individuals). We obtained summary statistics for forearm (FA) bone mineral density (BMD) (n = 8,143), femoral neck (FN) BMD (n = 32,735), lumbar spine (LS) BMD (n = 28,498), heel (HE) BMD (n = 426,824), and fracture (n = 1,214,434) from other GWAS meta-analyses. Inverse variance weighted (IVW) and several supplementary methods were performed to calculate the MR estimates.
Results
Genetically determined HF has no causal effect on FA-BMD (odds ratio (OR) 1.17; 95% confidence interval (CI) 0.82, 1.66; P = 0.389), FN-BMD (OR 1.01; 95% CI 0.85, 1.19; P = 0.936), LS-BMD (OR 0.96; 95% CI 0.80, 1.17; P = 0.705), HE-BMD (OR 1.01; 95% CI 0.90, 1.13; P = 0.884), and fracture risk (OR 1.00; 95% CI 0.92, 1.10; P = 0.927). Complementary analyses returned broadly consistent results.
Conclusion
This MR study provides genetic evidence that HF may not lead to an increased risk of reduced BMDs or fracture.
Funder
National Natural Science Foundation of China
Key Research and Development Plan of Zhejiang Province
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献