Author:
Zhu Xiaoying,You Shijing,Du Xiuzhen,Song Kejuan,Lv Teng,Zhao Han,Yao Qin
Abstract
AbstractBackgroundLeucine-rich repeat sequence domains are known to mediate protein‒protein interactions. Recently, some studies showed that members of the leucine rich repeat containing (LRRC) protein superfamily may become new targets for the diagnosis and treatment of tumours. However, it is not known whether any of the LRRC superfamily genes is expressed in the stroma of ovarian cancer (OC) and is associated with prognosis.MethodsThe clinical data and transcriptional profiles of OC patients from the public databases TCGA (n = 427), GTEx (n = 88) and GEO (GSE40266 and GSE40595) were analysed by R software. A nomogram model was also generated through R. An online public database was used for auxiliary analysis of prognosis, immune infiltration and protein‒protein interaction (PPI) networks. Immunohistochemistry and qPCR were performed to determine the protein and mRNA levels of genes in high-grade serous ovarian cancer (HGSC) tissues of participants and the MRC-5 cell line induced by TGF-β.ResultsLRRC15 and LRRC32 were identified as differentially expressed genes from the LRRC superfamily by GEO transcriptome analysis. PPI network analysis suggested that they were most enriched in TGF-β signalling. The TCGA-GTEx analysis results showed that only LRRC15 was highly expressed in both cancer-associated fibroblasts (CAFs) and the tumour stroma of OC and was related to clinical prognosis. Based on this, we developed a nomogram model to predict the incidence of adverse outcomes in OC. Moreover, LRRC15 was positively correlated with CAF infiltration and negatively correlated with CD8 + T-cell infiltration. As a single indicator, LRRC15 had the highest accuracy (AUC = 0.920) in predicting the outcome of primary platinum resistance.ConclusionsThe LRRC superfamily is related to the TGF-β pathway in the microenvironment of OC. LRRC15, as a stromal biomarker, can predict the clinical prognosis of HGSC and promote the immunosuppressive microenvironment. LRRC15 may be a potential therapeutic target for reversing primary resistance in OC.
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献