Identification of mitochondria-related biomarkers in childhood allergic asthma

Author:

Zhao Wei,Fang Hongjuan,Wang Tao,Yao Chao

Abstract

Abstract Background The mechanism of mitochondria-related genes (MRGs) in childhood allergic asthma (CAS) was unclear. The aim of this study was to find new biomarkers related to MRGs in CAS. Methods This research utilized two CAS-related datasets (GSE40888 and GSE40732) and extracted 40 MRGs from the MitoCarta3.0 Database. Initially, differential expression analysis was performed on CAS and control samples in the GSE40888 dataset to obtain the differentially expressed genes (DEGs). Differentially expressed MRGs (DE-MRGs) were obtained by overlapping the DEGs and MRGs. Protein protein interactions (PPI) network of DE-MRGs was created and the top 10 genes in the degree ranking of Maximal Clique Centrality (MCC) algorithm were defined as feature genes. Hub genes were obtained from the intersection genes from the Least absolute shrinkage and selection operator (LASSO) and EXtreme Gradient Boosting (XGBoost) algorithms. Additionally, the expression validation was conducted, functional enrichment analysis, immune infiltration analysis were finished, and transcription factors (TFs)-miRNA-mRNA regulatory network was constructed. Results A total of 1505 DEGs were obtained from the GSE40888, and 44 DE-MRGs were obtained. A PPI network based on these 44 DE-MRGs was created and revealed strong interactions between ADCK5 and MFN1, BNIP3 and NBR1. Four hub genes (NDUFAF7, MTIF3, MRPS26, and NDUFAF1) were obtained by taking the intersection of genes from the LASSO and XGBoost algorithms based on 10 signature genes which obtained from PPI. In addition, hub genes-based alignment diagram showed good diagnostic performance. The results of Gene Set Enrichment Analysis (GSEA) suggested that hub genes were closely related to mismatch repair. The B cells naive cells were significantly expressed between CAS and control groups, and MTIF3 was most strongly negatively correlated with B cells naive. In addition, the expression of MTIF3 and MRPS26 may have influenced the inflammatory response in CAS patients by affecting mitochondria-related functions. The quantitative real-time polymerase chain reaction (qRT‒PCR) results showed that four hub genes were all down-regulated in the CAS samples. Conclusion NDUFAF7, MTIF3, MRPS26, and NDUFAF1 were identified as an MRGs-related biomarkers in CAS, which provides some reference for further research on CAS.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3