Transcriptomics and metabolomics reveal changes in the regulatory mechanisms of osteosarcoma under different culture methods in vitro

Author:

Yang Sen,Tian Zhi,Feng Yi,Zhang Kun,Pan Yongchun,Li Yuan,Wang Zhichao,Wei Wenhao,Qiao Xiaochen,Zhou Ruhao,Yan Lei,Li Qian,Guo Hua,Yuan Jie,Li Pengcui,Lv Zhi

Abstract

Abstract Background Recently, increasing attention has been drawn to the impact of the tumor microenvironment (TME) on the occurrence and progression of malignant tumors. A variety of 3D culture techniques have been used to simulate TME in vitro. The purpose of this study was to reveal the differences in transcriptional and metabolic levels between osteosarcoma (OS) 2D cells, 3D cells, 3D cell-printed tissue, isolated tissue, and transplanted tumor tissue in vivo. Methods We cultured the OS Saos-2 cell line under different culture methods as 2D cells, 3D cells, 3D cell-printed tissue and isolated tissue for 14 days and transplanted tumors in vivo as a control group. Through transcriptomic and metabonomic analyses, we determined the changes in gene expression and metabolites in OS tissues under different culture methods. Results At the transcriptional level, 166 differentially expressed genes were found, including the SMAD family, ID family, BMP family and other related genes, and they were enriched in the TGF-β signaling pathway, complement and coagulation cascades, signaling pathways regulating pluripotency of stem cells, Hippo signaling pathway, ferroptosis, cGMP-PKG signaling pathway and other pathways. At the metabolic level, 362 metabolites were significantly changed and enriched in metabolic pathways such as the Fc Epsilon RI signaling pathway, histidine metabolism, primary bile acid biosynthesis, steroid biosynthesis, protein digestion and absorption, ferroptosis, and arachidonic acid metabolism. After integrating the transcriptome and metabolomics data, it was found that 44 metabolic pathways were changed, and the significantly enriched pathways were ferroptosis and pyrimidine metabolism. Conclusion Different culture methods affect the gene expression and metabolite generation of OS Saos-2 cells. Moreover, the cell and tissue culture method in vitro cannot completely simulate TME in vivo, and the ferroptosis and pyrimidine metabolism pathways mediate the functional changes of OS Saos-2 cells in different microenvironments.

Funder

The National Natural Science Foundation of China

The Second Hospital of Shanxi Medical University, four research fund projects within the hospital

Natural Science Foundation of Shanxi Province

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3