Gene S-phase kinase associated protein 2 is a novel prognostic marker in human neoplasms

Author:

Li Guo-Sheng,Huang Tao,Zhou Hua-Fu

Abstract

Abstract Background Neoplasms are a series of diseases affecting human health. Prognostic and tumor status–related markers for various tumors should be identified. Methods Based on 19,515 samples from multiple sources, for the first time, this study provided an overview of gene S-phase kinase associated protein 2 (SKP2) in pan-cancer. Differential SKP2 expression in multiple comparison groups was identified by the Kruskal–Wallis test and Wilcoxon rank-sum test. The prognosis significance of SKP2 in individuals with neoplasm was evaluated through univariate Cox regression analysis and Kaplan-Meier curves. The area under the curve was utilized to detect the accuracy of SKP2 in predicting cancer status. Spearman’s rank correlation coefficients were calculated in all correlation analyses. Gene set enrichment analysis was used to identify essential signaling pathways of SKP2 in human neoplasms. Results The study disclosed the upregulated SKP2 expression in 15 neoplasms and decreased SKP2 expression in three cancers (p < 0.05). The transcription factor Forkhead Box M1 may contribute to the increased expression levels of SKP2 in certain tumors. Over-expressed SKP2 represented a risk factor for the prognosis of most cancer patients (hazard ratio > 1, p < 0.05). SKP2 expression made it feasible to distinguish neoplasm and control tissues of 21 neoplasms (sensitivity = 0.79, specificity = 0.87, area under the curve = 0.90), implying its potential in screening a series of neoplasms. Further, the research revealed the close association of SKP2 expression with DNA methyltransferases, mismatch repair genes, microsatellite instability, tumor mutational burden, neoantigen count, and immunity. Conclusions SKP2 plays an essential role in multiple neoplasms and may serve as a marker for treating and identifying these neoplasms.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3