Abstract
Abstract
Background
Ventricular septal defect is the most common form of congenital heart diseases. MYH6 gene has a critical effect on the growth and development of the heart but the variants in the promoter of MYH6 is unknown.
Patients and methods
In 604 of the subjects (311 isolated and sporadic ventricular septal defect patients and 293 healthy controls), DNA was extracted from blood samples and MYH6 gene promoter region variants were analyzed by sequencing. Further functional verification was performed by cellular experiments using dual luciferase reporter gene analysis, electrophoretic mobility shift assays, and bioinformatics analysis.
Results
Nine variants were identified in the MYH6 gene promoter and two of those variants [g.4085G>C(rs1222539675) and g.4716G>A(rs377648095)] were only found in the ventricular septal defect patients. Cellular function experiments showed that these two variants reduced the transcriptional activity of the MYH6 gene promoter (p < 0.001). Further analysis with online JASPAR database suggests that these variants may alter a set of putative transcription factor binding sites that possibly lead to changes in myosin subunit expression and ventricular septal defect formation.
Conclusions
Our study for the first time identifies variants in the promoter region of the MYH6 gene in Chinese patients with isolated and sporadic ventricular septal defect. These variants significantly reduced MYH6 gene expression and affected transcription factor binding sites and therefore are pathogenic. The present study provides new insights in the role of the MYH6 gene promoter region to better understand the genetic basis of VSD formation.
Funder
Tianjin Municipal Health Commission
Tianjin Binhai New Area Health Commission
TEDA International Cardiovascular Hospital
Tianjin Key Medical Discipline (Specialty) Construction Project
Tianjin Science and Technology Committee
National Natural Science Foundation of China
Chinese Academy of Medical Sciences
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Reference46 articles.
1. Chowdhury D, Johnson JN, Baker-Smith CM, Jaquiss R, Mahendran AK, Curren V, et al. Health care policy and congenital heart disease: 2020 focus on our 2030 future. J Am Heart Assoc. 2021;10(20):e020605.
2. Samad T, Wu SM. Single cell RNA sequencing approaches to cardiac development and congenital heart disease. Semin Cell Dev Biol. 2021;118:129–35.
3. Simmons W, Lin S, Luben TJ, Sheridan SC, Langlois PH, Shaw GM, et al. Modeling complex effects of exposure to particulate matter and extreme heat during pregnancy on congenital heart defects: a US population-based case-control study in the National Birth Defects Prevention Study. Sci Total Environ. 2022;808:152150.
4. GBD 2017 Congenital Heart Disease Collaborators. Global, regional, and national burden of congenital heart disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Child Adolesc Health. 2020;4(3):185–200.
5. Stout KK, Daniels CJ, Aboulhosn JA, Bozkurt B, Broberg CS, Colman JM, et al. AHA/ACC guideline for the management of adults with congenital heart disease: executive summary: a report of the American college of cardiology/American heart association task force on clinical practice guidelines. Circulation. 2019;139(14):e637–97.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献