HiSSI: high-order SNP-SNP interactions detection based on efficient significant pattern and differential evolution

Author:

Cao Xia,Liu Jie,Guo Maozu,Wang JunORCID

Abstract

Abstract Background Detecting single nucleotide polymorphism (SNP) interactions is an important and challenging task in genome-wide association studies (GWAS). Various efforts have been devoted to detect SNP interactions. However, the large volume of SNP datasets results in such a big number of high-order SNP combinations that restrict the power of detecting interactions. Methods In this paper, to combat with this challenge, we propose a two-stage approach (called HiSSI) to detect high-order SNP-SNP interactions. In the screening stage, HiSSI employs a statistically significant pattern that takes into account family wise error rate, to control false positives and to effectively screen two-locus combinations candidate set. In the searching stage, HiSSI applies two different search strategies (exhaustive search and heuristic search based on differential evolution along with χ2-test) on candidate pairwise SNP combinations to detect high-order SNP interactions. Results Extensive experiments on simulated datasets are conducted to evaluate HiSSI and recently proposed and related approaches on both two-locus and three-locus disease models. A real genome-wide dataset: breast cancer dataset collected from the Wellcome Trust Case Control Consortium (WTCCC) is also used to test HiSSI. Conclusions Simulated experiments on both two-locus and three-locus disease models show that HiSSI is more powerful than other related approaches. Real experiment on breast cancer dataset, in which HiSSI detects some significantly two-locus and three-locus interactions associated with breast cancer, again corroborate the effectiveness of HiSSI in high-order SNP-SNP interaction identification.

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3