An adaptive method of defining negative mutation status for multi-sample comparison using next-generation sequencing

Author:

Hutson Nicholas,Zhan Fenglin,Graham James,Murakami Mitsuko,Zhang Han,Ganaparti Sujana,Hu Qiang,Yan Li,Ma Changxing,Liu Song,Xie Jun,Wei LeiORCID

Abstract

Abstract Background Multi-sample comparison is commonly used in cancer genomics studies. By using next-generation sequencing (NGS), a mutation's status in a specific sample can be measured by the number of reads supporting mutant or wildtype alleles. When no mutant reads are detected, it could represent either a true negative mutation status or a false negative due to an insufficient number of reads, so-called "coverage". To minimize the chance of false-negative, we should consider the mutation status as "unknown" instead of "negative" when the coverage is inadequately low. There is no established method for determining the coverage threshold between negative and unknown statuses. A common solution is to apply a universal minimum coverage (UMC). However, this method relies on an arbitrarily chosen threshold, and it does not take into account the mutations' relative abundances, which can vary dramatically by the type of mutations. The result could be misclassification between negative and unknown statuses. Methods We propose an adaptive mutation-specific negative (MSN) method to improve the discrimination between negative and unknown mutation statuses. For a specific mutation, a non-positive sample is compared with every known positive sample to test the null hypothesis that they may contain the same frequency of mutant reads. The non-positive sample can only be claimed as “negative” when this null hypothesis is rejected with all known positive samples; otherwise, the status would be “unknown”. Results We first compared the performance of MSN and UMC methods in a simulated dataset containing varying tumor cell fractions. Only the MSN methods appropriately assigned negative statuses for samples with both high- and low-tumor cell fractions. When evaluated on a real dual-platform single-cell sequencing dataset, the MSN method not only provided more accurate assessments of negative statuses but also yielded three times more available data after excluding the “unknown” statuses, compared with the UMC method. Conclusions We developed a new adaptive method for distinguishing unknown from negative statuses in multi-sample comparison NGS data. The method can provide more accurate negative statuses than the conventional UMC method and generate a remarkably higher amount of available data by reducing unnecessary “unknown” calls.

Funder

Roswell Park Alliance Foundation, Roswell Park Cancer Institute

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3