Detection of large rearrangements in a hereditary pan-cancer panel using next-generation sequencing

Author:

Mancini-DiNardo DeboraORCID,Judkins Thaddeus,Kidd John,Bernhisel Ryan,Daniels Courtney,Brown Krystal,Meek Kirsten,Craft Jonathan,Holladay Jayson,Morris Brian,Roa Benjamin B.

Abstract

Abstract Background Healthcare providers increasingly use information about pathogenic variants in cancer predisposition genes, including sequence variants and large rearrangements (LRs), in medical management decisions. While sequence variant detection is typically robust, LRs can be difficult to detect and characterize and may be underreported as a cause for hereditary cancer risk. This report describes the outcomes of hereditary cancer genetic testing using a comprehensive strategy that employs next-generation sequencing (NGS) for LR detection, coupled with LR confirmation using repeat hybrid capture NGS, microarray comparative genomic hybridization (microarray-CGH), and/or multiplex ligation-dependent probe amplification (MLPA). Methods Sequencing and LR analysis were conducted in a consecutive series of 376,159 individuals who received clinical testing with a hereditary pan-cancer gene panel from September 2013 through May 2017. NGS dosage analysis was used to evaluate potential deletions or duplications, with controls in place to exclude pseudogene reads. Samples positive for a putative LR based on NGS were confirmed using a comprehensive approach that included targeted microarray-CGH and/or MLPA analysis, with further examination as needed to ascertain the nature of the LR. Results A total of 3461 LRs were identified and classified as a deleterious mutation (DM), suspected deleterious mutation (SDM) or variant of uncertain significance. Pathogenic LRs (DM/SDM) accounted for the majority of LRs (67.7%), the largest proportion of which were deletions (86.1%), followed by duplications (11.3%), insertions (1.8%), triplications (0.5%), and inversions (0.3%). Several cases presented illustrate that the laboratory approach employed here can ensure consistent identification and accurate characterization of LRs. In the absence of this comprehensive testing strategy, 9% of LRs identified in this testing population might have been missed, potentially leading to inappropriate medical management in as many as 210 individuals referred for hereditary cancer testing. Conclusions These data show that copy number analysis using NGS coupled with confirmatory testing reliably detects and characterizes LRs. Further, LRs comprise a substantial proportion (7.2%) of pathogenic variants identified by the test. A robust and accurate LR identification strategy is an essential component of a high-quality genetic testing program, enabling clinicians to optimize patient medical management decisions.

Funder

Myriad Genetic Laboratories, Inc.

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Genetics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3