Author:
Chen Hao,Gilad-Bachrach Ran,Han Kyoohyung,Huang Zhicong,Jalali Amir,Laine Kim,Lauter Kristin
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Reference21 articles.
1. Graepel T, Lauter K, Naehrig M. ML confidential: Machine learning on encrypted data. In: International Conference on Information Security and Cryptology. Berlin: Springer: 2012. p. 1–21.
2. Mohassel P, Zhang Y. Secureml: A system for scalable privacy-preserving machine learning. In: Security and Privacy (SP), 2017 IEEE Symposium on. San Jose: IEEE: 2017. p. 19–38.
3. Rivest RL, Adleman L, Dertouzos ML. On data banks and privacy homomorphisms. Found Secure Comput. 1978; 4(11):169–80.
4. Gentry C. A fully homomorphic encryption scheme. Stanford: Stanford University; 2009.
5. Lauter K, Naehrig M, Vaikuntanathan V. Can Homomorphic Encryption Be Practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop. CCSW ’11. New York: ACM: 2011. p. 113–124. Available from:
http://doi.acm.org/10.1145/2046660.2046682
.
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献