Abstract
Abstract
Background
Thyroid cancer (TC) is the most common endocrine malignancy worldwide. The incidence of TC is high and increasing worldwide due to continuous improvements in diagnostic technology. Therefore, identifying accurate prognostic predictions to stratify TC patients is important.
Methods
Raw data were downloaded from the TCGA database, and pairwise comparisons were applied to identify differentially expressed immune-related lncRNA (DEirlncRNA) pairs. Then, we used univariate Cox regression analysis and a modified Lasso algorithm on these pairs to construct a risk assessment model for TC. We further used qRT‒PCR analysis to validate the expression levels of irlncRNAs in the model. Next, TC patients were assigned to high- and low-risk groups based on the optimal cutoff score of the model for the 1-year ROC curve. We evaluated the signature in terms of prognostic independence, predictive value, immune cell infiltration, immune status, ICI-related molecules, and small-molecule inhibitor efficacy.
Results
We identified 14 DEirlncRNA pairs as the novel predictive signature. In addition, the qRT‒PCR results were consistent with the bioinformatics results obtained from the TCGA dataset. The high-risk group had a significantly poorer prognosis than the low-risk group. Cox regression analysis revealed that this immune-related signature could predict prognosis independently and reliably for TC. With the CIBERSORT algorithm, we found an association between the signature and immune cell infiltration. Additionally, immune status was significantly higher in low-risk groups. Several immune checkpoint inhibitor (ICI)-related molecules, such as PD-1 and PD-L1, showed a negative correlation with the high-risk group. We further discovered that our new signature was correlated with the clinical response to small-molecule inhibitors, such as sunitinib.
Conclusions
We have constructed a prognostic immune-related lncRNA signature that can predict TC patient survival without considering the technical bias of different platforms, and this signature also sheds light on TC’s overall prognosis and novel clinical treatments, such as ICB therapy and small molecular inhibitors.
Funder
The Clinical Research Fund of Chinese Medical Association
The National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献