Author:
Cheng Chen,Li Xiuxiu,Zhao Sheng,Feng Qian,Ren Xiang,Chen Xinlin
Abstract
Abstract
Background
Short-rib thoracic dysplasia 3 with or without polydactyly (SRTD3, OMIM: 613091) is an autosomal recessive disorder. SRTD3 presents clinically with a narrow thorax, short ribs, shortened tubular bones, and acetabular roof abnormalities. Clinical signs of SRTD3 vary among individuals. Pathogenic variants of DYNC2H1 (OMIM: 603297) have been reported to cause SRTD3.
Methods
We performed a detailed clinical prenatal sonographic characterization of a foetus with SRTD3. Trio whole-exome sequencing was used to identify causative variants in the family. The identified variants in the families were validated by Sanger sequencing and mass spectrometry. Multiple computational tools were used to predict the harmfulness of the two variants. A minigene splicing assay was carried out to evaluate the impact of the splice-site variant.
Results
We evaluated prenatal sonographic images of the foetus with SRTD3, including abnormal rib curvature, narrow thorax, bilateral hypoplastic lungs, bilateral polydactyly, syndactyly, and foetal visceral situs inversus with mirror-image dextrocardia. We revealed novel compound variants of DYNC2H1 (NM_001377.3:c.11483T > G (p.Ile3828Arg) and c.2106 + 3A > T). Various statistical methods predicted that the variants would cause harmful effects on genes or gene products. The minigene assay findings suggested that c.2106 + 3A > T caused the skipping over exon 14, producing an exon 14 loss in the protein.
Conclusion
This study identified a foetus with SRTD3 with situs inversus totalis with mirror-image dextrocardia in a Chinese family, revealing two novel compound heterozygous dynein cytoplasmic 2 heavy chain 1 (DYNC2H1) variants, expanding the phenotypic spectrum of SRTD3. The minigene study of c.2106 + 3A > T was predicted to cause an inframe exclusion of exon 14, which was predicted to have important molecular functions. Our findings strongly supported the use of WES in prenatal diagnosis and helped to understand the correlation of genotype and phenotypes of DYNC2H1. The specific sonographic findings and the molecular diagnosis helped add experience to further our expertise in prenatal counselling for SRTD3.
Funder
Hubei Province Natural Science Foundation
Hubei Province health and family planning scientific research project
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Reference18 articles.
1. Dagoneau N, Goulet M, Genevieve D, Sznajer Y, Martinovic J, Smithson S, Huber C, Baujat G, Flori E, Tecco L, et al. DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome, type III. Am J Hum Genet. 2009;84(5):706–11.
2. Chen LS, Shi SJ, Zou PS, Ma M, Chen XH, Cao DH. Identification of novel DYNC2H1 mutations associated with short rib-polydactyly syndrome type III using next-generation panel sequencing. Genet Mol Res. 2016;15(2):8134.
3. Zhang W, Taylor SP, Ennis HA, Forlenza KN, Duran I, Li B, Sanchez JAO, Nevarez L, Nickerson DA, Bamshad M, et al. Expanding the genetic architecture and phenotypic spectrum in the skeletal ciliopathies. Hum Mutat. 2018;39(1):152–66.
4. Mei L, Huang Y, Pan Q, Su W, Quan Y, Liang D, Wu L. Targeted next-generation sequencing identifies novel compound heterozygous mutations of DYNC2H1 in a fetus with short rib-polydactyly syndrome, type III. Clin Chim Acta. 2015;447:47–51.
5. Wei X, Ju X, Yi X, Zhu Q, Qu N, Liu T, Chen Y, Jiang H, Yang G, Zhen R, et al. Identification of sequence variants in genetic disease-causing genes using targeted next-generation sequencing. PLOS ONE. 2011;6(12):e29500.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献