Compound heterozygous variants in DYNC2H1 in a foetus with type III short rib-polydactyly syndrome and situs inversus totalis

Author:

Cheng Chen,Li Xiuxiu,Zhao Sheng,Feng Qian,Ren Xiang,Chen Xinlin

Abstract

Abstract Background Short-rib thoracic dysplasia 3 with or without polydactyly (SRTD3, OMIM: 613091) is an autosomal recessive disorder. SRTD3 presents clinically with a narrow thorax, short ribs, shortened tubular bones, and acetabular roof abnormalities. Clinical signs of SRTD3 vary among individuals. Pathogenic variants of DYNC2H1 (OMIM: 603297) have been reported to cause SRTD3. Methods We performed a detailed clinical prenatal sonographic characterization of a foetus with SRTD3. Trio whole-exome sequencing was used to identify causative variants in the family. The identified variants in the families were validated by Sanger sequencing and mass spectrometry. Multiple computational tools were used to predict the harmfulness of the two variants. A minigene splicing assay was carried out to evaluate the impact of the splice-site variant. Results We evaluated prenatal sonographic images of the foetus with SRTD3, including abnormal rib curvature, narrow thorax, bilateral hypoplastic lungs, bilateral polydactyly, syndactyly, and foetal visceral situs inversus with mirror-image dextrocardia. We revealed novel compound variants of DYNC2H1 (NM_001377.3:c.11483T > G (p.Ile3828Arg) and c.2106 + 3A > T). Various statistical methods predicted that the variants would cause harmful effects on genes or gene products. The minigene assay findings suggested that c.2106 + 3A > T caused the skipping over exon 14, producing an exon 14 loss in the protein. Conclusion This study identified a foetus with SRTD3 with situs inversus totalis with mirror-image dextrocardia in a Chinese family, revealing two novel compound heterozygous dynein cytoplasmic 2 heavy chain 1 (DYNC2H1) variants, expanding the phenotypic spectrum of SRTD3. The minigene study of c.2106 + 3A > T was predicted to cause an inframe exclusion of exon 14, which was predicted to have important molecular functions. Our findings strongly supported the use of WES in prenatal diagnosis and helped to understand the correlation of genotype and phenotypes of DYNC2H1. The specific sonographic findings and the molecular diagnosis helped add experience to further our expertise in prenatal counselling for SRTD3.

Funder

Hubei Province Natural Science Foundation

Hubei Province health and family planning scientific research project

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3