A novel truncated variant in SPAST results in spastin accumulation and defects in microtubule dynamics

Author:

Wang Jie,Wu Yihan,Dong Hong,Ji Yunpeng,Zhang Lichun,Liu Yaxian,Liu Yueshi,Gao Xin,Jia Yueqi,Wang Xiaohua

Abstract

Abstract Objective Haploinsufficiency is widely accepted as the pathogenic mechanism of hereditary spastic paraplegias type 4 (SPG4). However, there are some cases that cannot be explained by reduced function of the spastin protein encoded by SPAST. The aim of this study was to identify the causative variant of SPG4 in a large Chinese family and explore its pathological mechanism. Materials and methods A five-generation family with 49 members including nine affected (4 males and 5 females) and 40 unaffected individuals in Mongolian nationality was recruited. Whole exome sequencing was employed to investigate the genetic etiology. Western blotting and immunofluorescence were used to analyze the effects of the mutant proteins in vitro. Results A novel frameshift variant NM_014946.4: c.483_484delinsC (p.Val162Leufs*2) was identified in SPAST from a pedigree with SPG4. The variant segregated with the disease in the family and thus determined as the disease-causing variant. The c.483_484delinsC variant produced two truncated mutants (mutant M1 and M87 isoforms). They accumulated to a higher level and presented increased stability than their wild-type counterparts and may lost the microtubule severing activity. Conclusion SPAST mutations leading to premature stop codons do not always act through haploinsufficiency. The potential toxicity to the corticospinal tract caused by the intracellular accumulation of truncated spastin should be considered as the pathological mechanism of SPG4.

Funder

Key Technology Research Plan Project of Inner Mongolia Autonomous Region

Youth innovation Program of Inner Mongolia Maternity and Child Health Care Hospital

Healthcare Science and Technology Plan Project of Inner Mongolia Health Commission

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3