Abstract
Abstract
Background
Multiple acyl-CoA dehydrogenase deficiency (MADD), previously called glutaric aciduria type II, is a rare congenital metabolic disorder of fatty acids and amino acids oxidation, with recessive autosomal transmission. The prevalence in the general population is estimated to be 9/1,000,000 and the prevalence at birth approximately 1/200,000. The clinical features of this disease are divided into three groups of symptoms linked to a defect in electron transfer flavoprotein (ETF) metabolism. In this case report, we present new pathogenic variations in one of the two ETF protein subunits, called electron transfer flavoprotein alpha (ETFA), in a childhood-stage patient with no antecedent.
Case presentation
A five-year-old child was admitted to the paediatric emergency unit for seizures without fever. He was unconscious due to hypoglycaemia confirmed by laboratory analyses. At birth, he was a eutrophic full-term new-born with a normal APGAR index (score for appearance, pulse, grimace, activity, and respiration). He had one older brother and no parental consanguinity was reported. A slight speech acquisition delay was observed a few months before his admission, but he had no schooling problems. MADD was suspected based on urinary organic acids and plasma acylcarnitine analyses and later confirmed by genetic analysis, which showed previously unreported ETFA gene variations, both heterozygous (c.354C > A (p.Asn118Lys) and c.652G > A (p.Val218Met) variations). Treatment was based on avoiding fasting and a slow carbohydrate-rich evening meal associated with L-carnitine supplementation (approximately 100 mg/kg/day) for several weeks. This treatment was maintained and associated with riboflavin supplementation (approximately 150 mg/day). During follow up, the patient exhibited normal development and normal scholastic performance, with no decompensation.
Conclusion
This case report describes new pathogenic variations of the ETFA gene. These compound heterozygous mutations induce the production of altered proteins, leading to a mild form of MADD.
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Reference18 articles.
1. Przyrembel H, Wendel U, Becker K, Bremer HJ, Bruinvis L, Ketting D, Wadman SK. Glutaric aciduria type II: report on a previously undescribed metabolic disorder. Clin Chim Acta. 1976;66(2):227–39. 1245071.
2. Frerman FE, Goodman SI. Defects of electron transfer flavoprotein and electron transfer flavoprotein–ubiquinone oxidoreductase; glutaric aciduria type II. In: Scriver CR, Beauder AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited diseases. 8th ed. New York: McGraw-Hill; 2001. p. 2357–65.
3. Liang W-C, Ohkuma A, Hayashi YK, López LC, Hirano M, Nonaka I, et al. ETFDH mutations, CoQ10 levels, and respiratory chain activities in patients with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. Neuromuscul Disord. 2009;19:212–6. https://doi.org/10.1016/j.nmd.2009.01.008.
4. Rabier D, Bardet J, Parvy P, Poggi F, Brivet M, Saudubray JM, et al. Do criteria exist from urinary organic acids to distinguish beta-oxidation defects? J Inherit Metab Dis. 1995;18:257–60. https://doi.org/10.1007/bf00711782.
5. Grünert SC. Clinical and genetical heterogeneity of late-onset multiple acyl-coenzyme a dehydrogenase deficiency. Orphanet J Rare Dis. 2014;9. https://doi.org/10.1186/s13023-014-0117-5.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献