One novel ACOT7–NPHP4 fusion gene identified in one patient with acute lymphoblastic leukemia: a case report

Author:

Zong Xin,Kang Zhijie,Huang Dan,Zhang Xuehong,Gao Yuan,Wang Haina,Li Weiling,Yan JinsongORCID

Abstract

Abstract Background Acute lymphoblastic leukemia (ALL) is a type of heterogeneous hematopoietic malignancy that accounts for approximately 20% of adult ALL. Although ALL complete remission (CR) rate has increased to 85–90% after induction chemotherapy, 40–50% of patients eventually relapsed. Therefore, it is necessary to improve the outcomes of ALL via accurate diagnosis and individualized treatments, which benefits in part from molecular biomarkers. Here, we identified a new fusion gene, Acyl-CoA Thioesterase 7–Nephrocystin 4 (ACOT7–NPHP4), in a 34-year-old patient with ALL. The fusion gene contributed to chemoresistance to doxorubicin and acted as a new molecular marker. Case presentation A 34-year-old male patient was diagnosed with ALL (common B cell) based on clinical manifestations and laboratory results. Although the patient received two cycles of the hyper-CVAD-L regimen as chemotherapy, the induction treatment failed. Because of the refusal of further treatments, the patient died of rapid progression of ALL one month later. Finally, a new fusion transcript, ACOT7–NPHP4, was detected in the patient’s lymphoblastic leukemia cells via RNA sequencing. Conclusion This is the first report of a patient with ALL carrying an ACOT7–NPHP4 fusion gene. These findings may help understand the impact of ACOT7–NPHP4 in clinical molecular monitoring and drug resistance to doxorubicin; furthermore, its leukemogenesis will be essential to explore in future.

Funder

National Natural Science Foundation of China

Science and Technology Innovation Leading Talent Program of Liaoning Province

Key R & D projects in Liaoning Province

Key Project of the Educational Department of Liaoning Province

Key Projects of Liaoning Province Natural Science Foundation Plan

Dalian Science and Technology Innovation Fund

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3