Adaptive Fisher method detects dense and sparse signals in association analysis of SNV sets

Author:

Cai Xiaoyu,Chang Lo-Bin,Potter Jordan,Song Chi

Abstract

Abstract Background With the development of next generation sequencing (NGS) technology and genotype imputation methods, statistical methods have been proposed to test a set of genomic variants together to detect if any of them is associated with the phenotype or disease. In practice, within the set, there is an unknown proportion of variants truly causal or associated with the disease. There is a demand for statistical methods with high power in both dense and sparse scenarios, where the proportion of causal or associated variants is large or small respectively. Results We propose a new association test – weighted Adaptive Fisher (wAF) that can adapt to both dense and sparse scenarios by adding weights to the Adaptive Fisher (AF) method we developed before. Using simulation, we show that wAF enjoys comparable or better power to popular methods such as sequence kernel association tests (SKAT and SKAT-O) and adaptive SPU (aSPU) test. We apply wAF to a publicly available schizophrenia dataset, and successfully detect thirteen genes. Among them, three genes are supported by existing literature; six are plausible as they either relate to other neurological diseases or have relevant biological functions. Conclusions The proposed wAF method is a powerful disease-variants association test in both dense and sparse scenarios. Both simulation studies and real data analysis indicate the potential of wAF for new biological findings.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3