Clinical and genetic evaluation of children with short stature of unknown origin

Author:

Zhao Qianqian,Li Yanying,Shao Qian,Zhang Chuanpeng,Kou Shuang,Yang Wanling,Zhang Mei,Ban BoORCID

Abstract

Abstract Background Short stature is a common human trait. More severe and/or associated short stature is usually part of the presentation of a syndrome and may be a monogenic disease. The present study aimed to identify the genetic etiology of children with short stature of unknown origin. Methods A total of 232 children with short stature of unknown origin from March 2013 to May 2020 were enrolled in this study. Whole exome sequencing (WES) was performed for the enrolled patients to determine the underlying genetic etiology. Results We identified pathogenic or likely pathogenic genetic variants in 18 (7.8%) patients. All of these variants were located in genes known to be associated with growth disorders. Five of the genes are associated with paracrine signaling or cartilage extracellular matrix in the growth plate, including NPR2 (N = 1), ACAN (N = 1), CASR (N = 1), COMP (N = 1) and FBN1 (N = 1). Two of the genes are involved in the RAS/MAPK pathway, namely, PTPN11 (N = 6) and NF1 (N = 1). Two genes are associated with the abnormal growth hormone-insulin-like growth factor 1 (GH-IGF1) axis, including GH1 (N = 1) and IGF1R (N = 1). Two mutations are located in PROKR2, which is associated with gonadotropin-releasing hormone deficiency. Mutations were found in the remaining two patients in genes with miscellaneous mechanisms: ANKRD11 (N = 1) and ARID1A (N = 1). Conclusions The present study identified pathogenic or likely pathogenic genetic variants in eighteen of the 232 patients (7.8%) with short stature of unknown origin. Our findings suggest that in the absence of prominent malformation, genetic defects in hormones, paracrine factors, and matrix molecules may be the causal factors for this group of patients. Early genetic testing is necessary for accurate diagnosis and precision treatment.

Funder

Lin He's New Medicine and Clinical Translation Academician Workstation Research Fund

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3