A novel use for Levey-Jennings charts in prenatal molecular diagnosis

Author:

Weng BinghuanORCID,Xu Ya-li,Ying Jun,Yang Hao-kun,Su Lan,Yang Yan-mei,Chen Min

Abstract

Abstract Background The goal of this study was to determine whether Levey-Jennings charts, which are widely used in clinical laboratories, can be used to create standardized internal quality controls (IQCs) for prenatal molecular diagnosis. Methods Aneuploid amniocyte lines with trisomy 13, 21, and 18, and 47,XXY were established by transfection with SV40LTag-pcDNA3.1(−)and combined at different ratios to generate aneuploidy chimeric quality-control cell mixtures A to H. These quality-control cells were then used to calculate the $$ \overline{\mathrm{X}} $$ X ¯ , $$ \overline{\mathrm{X}} $$ X ¯ ±1 standard deviation (SD), $$ \overline{\mathrm{X}} $$ X ¯ ±2 SD, and $$ \overline{\mathrm{X}} $$ X ¯ ±3 SD values to develop standardized IQCs for methods used for the prenatal diagnosis of aneuploidies such as FISH. Results Methods for constructing aneuploid amniocyte lines were developed and a set of quality-control cells (A-H) were prepared. The $$ \overline{\mathrm{X}} $$ X ¯ ±1 SD, $$ \overline{\mathrm{X}} $$ X ¯ ±2 SD, and $$ \overline{\mathrm{X}} $$ X ¯ ±3 SD values of these quality-control cells for trisomy 13 and 21 were 10.2 ± 1.7, 10.2 ± 3.4, and 10.2 ± 5.1, and 90.3 ± 2.3, 90.3 ± 4.6, and 90.3 ± 6.9, respectively. Based on the values and Levey-Jennings charts, a set of standardized IQCs for prenatal diagnosis such as FISH were established. Conclusions This method resolves the problems of a shortage of quality-control materials and a lack of quality-control charts in prenatal molecular diagnosis such as NIPT, NGS, aCGH/SNP, PCR, and FISH. Levey-Jennings chart-based IQCs for prenatal diagnosis such as FISH can be used to easily monitor whether IQC results are within acceptable limits, and then infer whether the diagnostic results for clinical samples are reliable. We expect that this standardized IQC will be useful for a wide range of molecular diagnostic laboratories.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3