Repeat to gene expression ratios in leukemic blast cells can stratify risk prediction in acute myeloid leukemia

Author:

Onishi-Seebacher M.,Erikson G.,Sawitzki Z.,Ryan D.,Greve G.,Lübbert M.,Jenuwein T.ORCID

Abstract

Abstract Background Repeat elements constitute a large proportion of the human genome and recent evidence indicates that repeat element expression has functional roles in both physiological and pathological states. Specifically for cancer, transcription of endogenous retrotransposons is often suppressed to attenuate an anti-tumor immune response, whereas aberrant expression of heterochromatin-derived satellite RNA has been identified as a tumor driver. These insights demonstrate separate functions for the dysregulation of distinct repeat subclasses in either the attenuation or progression of human solid tumors. For hematopoietic malignancies, such as Acute Myeloid Leukemia (AML), only very few studies on the expression/dysregulation of repeat elements were done. Methods To study the expression of repeat elements in AML, we performed total-RNA sequencing of healthy CD34 + cells and of leukemic blast cells from primary AML patient material. We also developed an integrative bioinformatic approach that can quantify the expression of repeat transcripts from all repeat subclasses (SINE/ALU, LINE, ERV and satellites) in relation to the expression of gene and other non-repeat transcripts (i.e. R/G ratio). This novel approach can be used as an instructive signature for repeat element expression and has been extended to the analysis of poly(A)-RNA sequencing datasets from Blueprint and TCGA consortia that together comprise 120 AML patient samples. Results We identified that repeat element expression is generally down-regulated during hematopoietic differentiation and that relative changes in repeat to gene expression can stratify risk prediction of AML patients and correlate with overall survival probabilities. A high R/G ratio identifies AML patient subgroups with a favorable prognosis, whereas a low R/G ratio is prevalent in AML patient subgroups with a poor prognosis. Conclusions We developed an integrative bioinformatic approach that defines a general model for the analysis of repeat element dysregulation in physiological and pathological development. We find that changes in repeat to gene expression (i.e. R/G ratios) correlate with hematopoietic differentiation and can sub-stratify AML patients into low-risk and high-risk subgroups. Thus, the definition of a R/G ratio can serve as a valuable biomarker for AML and could also provide insights into differential patient response to epigenetic drug treatment.

Funder

Deutsche Forschungsgemeinschaft

Max-Planck-Gesellschaft

Max Planck Institute of Immunobiology and Epigenetics (MPI-IE)

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3