Author:
Yu Lin,Hongyu Sun,Yuxi Chen
Abstract
Abstract
Background
Osteosarcoma, as the most common primary bone malignancy, is urgent to be well-studied on the biomarkers and therapeutic targets to improve the five-year survival rate. Transcriptomic analysis using single-cell RNA or bulk RNA sequencing has been developed to detect biomarkers in various cancer types.
Methods and results
We applied Scissor to combine single-cell RNA-seq data and bulk transcriptome data of osteosarcoma, providing cell-level information and sample phenotypes to identify the survival-associated cell subpopulations. By investigating the differences between the survival-associated cell subpopulations, we identified CCL21, CCL22, CCL24, CXCL11, CXCL12, CXCL13, GNAI2, and RAC2 in the proliferating cells that are significantly associated with osteosarcoma patient outcome. Then we assigned the risk score for each sample based on the cell proportion-normalized gene expression and validated it in the public dataset.
Conclusions
This study provides the clinical insight that chemokine signaling pathway genes (CCL21, CCL22, CCL24, CXCL11, CXCL12, CXCL13, GNAI2, and RAC2) in proliferating cells might be the potential biomarkers for treatment of osteosarcoma.
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献