Abstract
Abstract
Background
Research grade Fresh Frozen (FF) DNA material is not yet routinely collected in clinical practice. Many hospitals, however, collect and store Formalin Fixed Paraffin Embedded (FFPE) tumor samples. Consequently, the sample size of whole genome cancer cohort studies could be increased tremendously by including FFPE samples, although the presence of artefacts might obfuscate the variant calling. To assess whether FFPE material can be used for cohort studies, we performed an in-depth comparison of somatic SNVs called on matching FF and FFPE Whole Genome Sequence (WGS) samples extracted from the same tumor.
Methods
Four variant callers (i.e. Strelka2, Mutect2, VarScan2 and Shimmer) were used to call somatic variants on matching FF and FFPE WGS samples from a metastatic prostate tumor. Using the variants identified by these callers, we developed a heuristic to maximize the overlap between the FF and its FFPE counterpart in terms of sensitivity and precision. The proposed variant calling approach was then validated on nine matched primary samples. Finally, we assessed what fraction of the discrepancy could be attributed to intra-tumor heterogeneity (ITH), by comparing the overlap in clonal and subclonal somatic variants.
Results
We first compared variants between an FF and an FFPE sample from a metastatic prostate tumor, showing that on average 50% of the calls in the FF are recovered in the FFPE sample, with notable differences between callers. Combining the variants of the different callers using a simple heuristic, increases both the precision and the sensitivity of the variant calling. Validating the heuristic on nine additional matched FF-FFPE samples, resulted in an average F1-score of 0.58 and an outperformance of any of the individual callers. In addition, we could show that part of the discrepancy between the FF and the FFPE samples can be attributed to ITH.
Conclusion
This study illustrates that when using the correct variant calling strategy, the majority of clonal SNVs can be recovered in an FFPE sample with high precision and sensitivity. These results suggest that somatic variants derived from WGS of FFPE material can be used in cohort studies.
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Reference26 articles.
1. Do H, Dobrovic A. Sequence artifacts in DNA from formalin-fixed tissues: causes and strategies for minimization. Clin Chem. 2015;61(1):64–71.
2. Wong SQ, Li J, Tan AYC, Vedururu R, Pang JMB, Do H, et al. Sequence artefacts in a prospective series of formalin-fixed tumours tested for mutations in hotspot regions by massively parallel sequencing. BMC Med Genet. 2014;7(1):1–10.
3. Haile S, Corbett RD, Bilobram S, Bye MH, Kirk H, Pandoh P, et al. Sources of erroneous sequences and artifact chimeric reads in next generation sequencing of genomic DNA from formalin-fixed paraffin-embedded samples. Nucleic Acids Res. 2019;47(2):e12.
4. Beltran H, Tagawa ST, Nanus DM, Yelensky R, Frampton GM, Downing SR, et al. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur Urol. 2013;63(5):920–6.
5. Hedegaard J, Thorsen K, Lund MK, Hein AMK, Hamilton-Dutoit SJ, Vang S, et al. Next-generation sequencing of RNA and DNA isolated from paired fresh-frozen and formalin-fixed paraffin-embedded samples of human cancer and normal tissue. PLoS One. 2014;9(5).
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献