Identification and validation of signal recognition particle 14 as a prognostic biomarker predicting overall survival in patients with acute myeloid leukemia

Author:

Shi Lingling,Huang Rui,Lai YongrongORCID

Abstract

Abstract Background This study aimed to determine and verify the prognostic value and potential functional mechanism of signal recognition particle 14 (SRP14) in acute myeloid leukemia (AML) using a genome-wide expression profile dataset. Methods We obtained an AML genome-wide expression profile dataset and clinical prognostic data from The Cancer Genome Atlas (TCGA) and GSE12417 databases, and explored the prognostic value and functional mechanism of SRP14 in AML using survival analysis and various online tools. Results Survival analysis showed that AML patients with high SRP14 expression had poorer overall survival than patients with low SRP14 expression. Time-dependent receiver operating characteristic curves indicated that SRP14 had good accuracy for predicting the prognosis in patients with AML. Genome-wide co-expression analysis suggested that SRP14 may play a role in AML by participating in the regulation of biological processes and signaling pathways, such as cell cycle, cell adhesion, mitogen-activated protein kinase, tumor necrosis factor, T cell receptor, DNA damage response, and nuclear factor-kappa B (NF-κB) signaling. Gene set enrichment analysis indicated that SRP14 was significantly enriched in biological processes and signaling pathways including regulation of hematopoietic progenitor cell differentiation and stem cell differentiation, intrinsic apoptotic signaling pathway by p53 class mediator, interleukin-1, T cell mediated cytotoxicity, and NF-κB-inducing kinase/NF-κB signaling. Using the TCGA AML dataset, we also identified four drugs (phenazone, benzydamine, cinnarizine, antazoline) that may serve as SRP14-targeted drugs in AML. Conclusion The current results revealed that high SRP14 expression was significantly related to a poor prognosis and may serve as a prognostic biomarker in patients with AML.

Funder

National Nature Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3