A novel homozygous TUB mutation associated with autosomal recessive retinitis pigmentosa in a consanguineous Chinese family

Author:

Xu Wei,Xu Ming,Yin Qinqin,Liu Chuangyi,Cao Qiuxiang,Deng Yun,Liu Sulai,He Guiyun

Abstract

Abstract Background Retinitis pigmentosa (RP) is the most common type of inherited retinopathy. At least 69 genes for RP have been identified. A significant proportion of RP, however, remains genetically unsolved. In this study, the genetic basis of a Chinese consanguineous family with presumed autosomal recessive retinitis pigmentosa (arRP) was investigated. Methods Overall ophthalmic examinations, including funduscopy, decimal best-corrected visual acuity, axial length and electroretinography (ERG) were performed for the family. Genomic DNA from peripheral blood of the proband was subjected to whole exome sequencing. In silico predictions, structural modelling, and minigene assays were conducted to evaluate the pathogenicity of the variant. Results A novel homozygous variant (NM_003320.4: c.1379A > G) in the TUB gene was identified as a candidate pathogenic variant in this parental consanguineous pedigree. This variant co-segregated with the disease in this pedigree and was absent in 118 ethnically matched healthy controls. It’s an extremely rare variant that is neither deposited in population databases (1000 Genomes, ExAC, GnomAD, or Exome Variant Server) nor reported in the literature. Phylogenetic analysis indicated that the Asn residue at codon 460 of TUB is highly conserved across diverse species from tropicalis to humans. It was also completely conserved among the TUB, TULP1, TULP2, and TULP3 family proteins. Multiple bioinformatic algorithms predicted that this variant was deleterious. Conclusions A novel missense variant in TUB was identified, which was probably the pathogenic basis for arRP in this consanguineous family. This is the first report of a homozygous missense variant in TUB for RP.

Funder

the General Program of Natural Science Foundation of Hunan Province,China

the grants from Health and Family Planning Commission of Hunan Province

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3