Competing endogenous RNA network analysis explores the key lncRNAs, miRNAs, and mRNAs in type 1 diabetes

Author:

Li Chang,Wei Bo,Zhao Jianyu

Abstract

Abstract Background Type 1 diabetes (T1D, named insulin-dependent diabetes) has a relatively rapid onset and significantly decreases life expectancy. This study is conducted to reveal the long non-coding RNA (lncRNA)-microRNA (miRNA)-mRNA regulatory axises implicated in T1D. Methods The gene expression profile under GSE55100 (GPL570 and GPL8786 datasets; including 12 T1D samples and 10 normal samples for each dataset) was extracted from Gene Expression Omnibus database. Using limma package, the differentially expressed mRNAs (DE-mRNAs), miRNAs (DE-miRNAs), and lncRNAs (DE-lncRNAs) between T1D and normal samples were analyzed. For the DE-mRNAs, the functional terms were enriched by DAVID tool, and the significant pathways were enriched using gene set enrichment analysis. The interactions among DE-lncRNAs, DE-miRNAs and DE-mRNAs were predicted using mirwalk and starbase. The lncRNA-miRNA-mRNA interaction network analysis was visualized by Cytoscape. The key genes in the interaction network were verified by quantitatively real-time PCR. Results In comparison to normal samples, 236 DE-mRNAs, 184 DE-lncRNAs, and 45 DE-miRNAs in T1D samples were identified. For the 236 DE-mRNAs, 16 Gene Ontology (GO)_biological process (BP) terms, four GO_cellular component (CC) terms, and 57 significant pathways were enriched. A network involving 36 DE-mRNAs, 8 DE- lncRNAs, and 15 DE-miRNAs was built, such as TRG-AS1—miR-23b/miR-423—PPM1L and GAS5—miR-320a/miR-23b/miR-423—SERPINA1 regulatory axises. Quantitatively real-time PCR successfully validated the expression levels of TRG-AS1- miR-23b -PPM1L and GAS5-miR-320a- SERPINA1. Conclusion TRG-AS1—miR-23b—PPM1L and GAS5—miR-320a—SERPINA1 regulatory axises might impact the pathogenesis of T1D.

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Genetics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3