Author:
Li Chang,Wei Bo,Zhao Jianyu
Abstract
Abstract
Background
Type 1 diabetes (T1D, named insulin-dependent diabetes) has a relatively rapid onset and significantly decreases life expectancy. This study is conducted to reveal the long non-coding RNA (lncRNA)-microRNA (miRNA)-mRNA regulatory axises implicated in T1D.
Methods
The gene expression profile under GSE55100 (GPL570 and GPL8786 datasets; including 12 T1D samples and 10 normal samples for each dataset) was extracted from Gene Expression Omnibus database. Using limma package, the differentially expressed mRNAs (DE-mRNAs), miRNAs (DE-miRNAs), and lncRNAs (DE-lncRNAs) between T1D and normal samples were analyzed. For the DE-mRNAs, the functional terms were enriched by DAVID tool, and the significant pathways were enriched using gene set enrichment analysis. The interactions among DE-lncRNAs, DE-miRNAs and DE-mRNAs were predicted using mirwalk and starbase. The lncRNA-miRNA-mRNA interaction network analysis was visualized by Cytoscape. The key genes in the interaction network were verified by quantitatively real-time PCR.
Results
In comparison to normal samples, 236 DE-mRNAs, 184 DE-lncRNAs, and 45 DE-miRNAs in T1D samples were identified. For the 236 DE-mRNAs, 16 Gene Ontology (GO)_biological process (BP) terms, four GO_cellular component (CC) terms, and 57 significant pathways were enriched. A network involving 36 DE-mRNAs, 8 DE- lncRNAs, and 15 DE-miRNAs was built, such as TRG-AS1—miR-23b/miR-423—PPM1L and GAS5—miR-320a/miR-23b/miR-423—SERPINA1 regulatory axises. Quantitatively real-time PCR successfully validated the expression levels of TRG-AS1- miR-23b -PPM1L and GAS5-miR-320a- SERPINA1.
Conclusion
TRG-AS1—miR-23b—PPM1L and GAS5—miR-320a—SERPINA1 regulatory axises might impact the pathogenesis of T1D.
Publisher
Springer Science and Business Media LLC
Subject
Genetics(clinical),Genetics
Reference53 articles.
1. Puchulu FM. Definition, diagnosis and classification of diabetes mellitus. Diabetes Care. 2018;33(Suppl 1):S62–9.
2. El-Sappagh S, Elmogy M, Ali F, Kwak KS. A case-base fuzzification process: diabetes diagnosis case study. Soft Comput. 2018;9:5815–34.
3. Dong Y, Fernandes C, Liu Y, Wu Y, Wu H, Brophy ML, Deng L, Song K, Wen A, Wong S. Role of endoplasmic reticulum stress signalling in diabetic endothelial dysfunction and atherosclerosis. Diabetes Vasc Dis Res. 2017;14(1):14–23.
4. Feinkohl I, Winterer G, Pischon T. Diabetes is associated with risk of postoperative cognitive dysfunction: A meta-analysis. Diabetes/Metab Res Rev. 2017;33(5):e2884.
5. Mihardja L, Delima D, Massie RGA, Karyana M, Nugroho P, Yunir E. Prevalence of kidney dysfunction in diabetes mellitus and associated risk factors among productive age Indonesian. J Diabetes Metab Disord. 2018;17(4):53–61.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献