Abstract
Abstract
Purpose
This study aims to investigate the potential bidirectional causal relationship between myopia and vitreous disorders from a genetic perspective, as vitreous disorders have been found to be closely associated with myopia development.
Methods
To achieve this, a two-sample Mendelian randomization (MR) design was employed. The study utilized pooled statistics from independent genome-wide association studies. Myopia was chosen as the exposure factor, while five different vitreous disorders were considered as outcomes. The primary analytical method was the inverse variance weighting (IVW) method, supplemented by sensitivity analysis.
Results
The study yielded significant findings indicating a positive association between myopia and vitreous disorders. The genetic prediction of myopia consistently demonstrated a positive correlation with vitreous disorders, as evidenced by IVW (odds ratio [OR] = 18.387; P < 0.01), MR Egger (OR = 2784.954; P < 0.01), weighted median (OR = 30.284; P < 0.01), and weighted mode (OR = 57.381; P < 0.01). All sensitivity analyses further validated these associations. Furthermore, a significant association was observed between myopia and other unspecified vitreous body disorders (IVW: OR = 57.729; P < 0.01).
Conclusion
Studies mainly conducted in European populations have confirmed that myopia, extending beyond early high myopia, plays a crucial role in influencing vitreous disorders and that there is a unidirectional causal relationship between myopia and vitreous disorders. Additionally, a causal relationship was identified between myopia and other unspecified vitreous disordes. These findings introduce fresh perspectives for the clinical management of unspecified vitreous disorders and contribute to the understanding of the effect of myopia on vitreous disorders. Myopia prevention and treatment will aid in slowing down the process of vitreous liquefaction and subsequently decrease the incidence of malignant eye conditions.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Reference32 articles.
1. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. Global prevalence of myopia and high myopia and temporal Trends from 2000 through 2050. Ophthalmology. 2016;123:1036–42.
2. Jonas JB, Jonas RA, Bikbov MM, Wang YX, Panda-Jonas S, Myopia. Histology, clinical features, and potential implications for the etiology of axial elongation. Prog Retin Eye Res. 2022;:101156.
3. Jiang C, Melles RB, Yin J, Fan Q, Guo X, Cheng C-Y, et al. A multiethnic genome-wide analysis of 19,420 individuals identifies novel loci associated with axial length and shared genetic influences with refractive error and myopia. Front Genet. 2023;14:1113058.
4. Nguyen JH, Nguyen-Cuu J, Mamou J, Routledge B, Yee KMP, Sebag J. Vitreous structure and visual function in myopic Vitreopathy Causing Vision-Degrading Myodesopsia. Am J Ophthalmol. 2021;224:246–53.
5. Ma B, Zhang W, Wang X, Jiang H, Tang L, Yang W, et al. Polymorphisms in TRIB2 and CAPRIN2 genes contribute to the susceptibility to High Myopia-Induced cataract in Han Chinese Population. Med Sci Monit Int Med J Exp Clin Res. 2023;29:e937702.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献