Effect of ACE, ACE2 and CYP11B2 gene polymorphisms and noise on essential hypertension among steelworkers in China: a case–control study

Author:

Zhang Xiaohong,Wang Ying,Zheng Yao,Yuan Juxiang,Tong Junwang,Xu Jingya,Li Qinglin,Li Peishuai,Jiang Shoufang,Wang Zhaoyang,Chai Feng,Li Xiangwen

Abstract

Abstract Background Previous studies on the relationship between ACE I/D, ACE2 G8790A and CYP11B2-344T/C gene polymorphisms and essential hypertension (EH) were inconsistent. Moreover, few studies have reported the combined effect of these gene polymorphisms and noise exposure on EH. The purpose of this study was to explore the combined and separate effects of ACE I/D, ACE2 G8790A and CYP11B2-344T/C gene polymorphisms and noise on EH among steelworkers. Methods A case–control study was conducted on 725 male workers between March 2014 and July 2014 in the Tangsteel Company, China. The noise exposure of the workers were measured. Logistic regression and crossover analysis were used to analyse the effects of the interactions on the EH among steelworkers. GMDR was used to determine the best combination model of gene–noise interactions. Results Multivariate logistic regression showed that noise exposure increased the odds of EH, and the OR is 1.52 (95% CI 1.04–2.22). The risk of having EH for ACE I/D DD genotype carriers was 1.99 times that for II genotype carriers (95% CI 1.14–3.51). There was a negative additive interaction between ACE2 G8790A and CYP11B2-344T/C on EH (U3 =  − 2.221, P = 0.026, and S = 0.128) and a positive multiplicative interaction between ACE I/D and CYP11B2-344T/C on essential hypertension (P = 0.041). In addition, there was no significant gene–noise interaction model through the GMDR method after adjusting the confounders. Conclusions The ACE DD genotype may make men susceptible to EH. Simultaneously carrying the DD genotype of ACE I/D and the TC genotype of CYP11B2-344T/C increased the risk of EH.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3